簡易檢索 / 詳目顯示

研究生: 朱健綸
Chu, Jian-Lun
論文名稱: 電感性回授之低功率交錯耦合壓控振盪器
Low Power Cross Couple VCO with Inductive Feedback
指導教授: 洪茂峰
Houng, Mau-Phon
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 78
中文關鍵詞: 交錯耦合壓控振盪器Colpitts振盪器電感性回授振盪器
外文關鍵詞: Inductive-Feedback Oscillator, Cross-Couple Voltage Controlled Oscillator, Colpitts Oscillator
相關次數: 點閱:79下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   電路設計均朝向面積縮小、低功率消耗及高傳輸速率之目標,使整個系統可以達到整合之目的,因此本論文針對縮小LC tank之面積、提升電感Q值及增加負電阻,以達到面積縮小和低功率消耗之目的。在論文中討論到振盪器之原理與架構,並且以現今最常使用之LC振盪器作為分析,如Colpitts振盪器、Inductive-Feedback振盪器及Cross-Couple振盪器。而在過去十年內,單石晶片已經逐漸成熟,並且單石電感也逐漸出現在雙載子和CMOS製程中,因此我們將以Hybrid之方式設計Colpitts振盪器及Inductive-Feedback振盪器,並且將比較Colpitts振盪器與Inductive-Feedback振盪器之優缺點,之後以CMOS製程來實現我們的電路,將電感性回授之設計方式加到交錯耦合壓控振盪電路裡,並且將其命名為電感性回授之低功率交錯耦合壓控振盪器。在模擬中得知我們所設計的電路,可以達到低功率消耗以寬調諧頻寬,並且使用center-tapped電感,使我們電路之LC tank達到縮小面積之目的。

     The circuit design is oriented to the goal of shrinking area、low power dissipation and high data transmission. Let all system components can be integrated on a chip. Hence our thesis aim at shrinking the area of LC tank、promoting the Q factor of inductor and increasing negative-resistance, so as to arrive at the target of shrinking area and low power dissipation. In our thesis, we talk about the theory and architecture of oscillator, and we will use the LC oscillator which is the most popular for analysis, like Colpitts oscillator、Inductive-Feedback oscillator and Cross-Couple oscillator. In the past ten years, the monolithic chip has gradually matured, and the monolithic inductor have gradually appeared on CMOS fabrication. Therefore we design Colpitts oscillator and Inductive-Feedback oscillator by hybrid, and compare each other about characteristics of oscillator. Then we realize our circuit which combines Cross-Couple oscillator with Inductive-Feedback by CMOS fabrication, and call it as “Low Power Cross-Couple VCO with Inductive-Feedback.” We can obtain the proposed circuit can reach low power dissipation and wider tuning range by simulation, and the LC tank of proposed circuit arrives at the goal of shrinking area by using center-tapped inductor.

    第一章 序論----------------------------------------------------------------1 1-1 簡介-------------------------------------------------------------------1 1-2 動機-------------------------------------------------------------------2 1-3 章節概數---------------------------------------------------------------2 第二章 振盪器之原理與架構--------------------------------------------------4 2-1 振盪器之原理-----------------------------------------------------------4 2-1-1 回授法---------------------------------------------------------------4 2-1-2 單埠網路負電阻法-----------------------------------------------------7 2-1-3 雙埠網路負電阻法-----------------------------------------------------10 2-2 振盪器之架構-----------------------------------------------------------11 2-2-1 Colpitts & Inductive-Feedback振盪器----------------------------------12 2-2-2 交錯耦合振盪器-------------------------------------------------------16 第三章 壓控振盪器之規格----------------------------------------------------20 3-1 相位雜訊---------------------------------------------------------------20 3-1-1 相位雜訊對射頻系統的影響---------------------------------------------21 3-1-2 振盪器之Q值----------------------------------------------------------22 3-1-3 相位雜訊之機制-------------------------------------------------------24 3-1-3-1 Razavi’s模型------------------------------------------------------24 3-1-3-2 Abidi’s模型-------------------------------------------------------26 3-1-3-3 Hajimiri’s模型----------------------------------------------------30 3-2 調諧(tuning)---------------------------------------------------------35 3-2-1 調諧範圍-------------------------------------------------------------35 3-2-2 調諧線性特性---------------------------------------------------------36 3-3 輸出振幅---------------------------------------------------------------37 3-4 消耗功率---------------------------------------------------------------37 3-5 供應電壓和共模排斥-----------------------------------------------------37 3-6 Pushing和Pulling-------------------------------------------------------37 3-6-1 Pulling--------------------------------------------------------------37 3-6-2 Pushing--------------------------------------------------------------37 第四章 電感性回授之低功率交錯耦合壓控振盪器--------------------------------39 4-1 Colpitts與Inductive-Feedback振盪器之設計-------------------------------39 4-1-1 共振電路-------------------------------------------------------------40 4-1-2 主動電路-------------------------------------------------------------42 4-1-3 Colpitts及Inductive-Feedback振盪器-----------------------------------44 4-2 電感性回授之低功率交錯耦合壓控振盪器之設計-----------------------------45 4-2-1 共振電路-------------------------------------------------------------46 4-2-2 主動電路-------------------------------------------------------------48 4-2-3 電感性回授之低功率交錯耦合壓控振盪器---------------------------------51 第五章 電路模擬與量測------------------------------------------------------54 5-1 Colpitts振盪器之模擬與量測---------------------------------------------54 5-1-1 共振電路-------------------------------------------------------------54 5-1-2 主動電路-------------------------------------------------------------55 5-1-3 振盪電路-------------------------------------------------------------56 5-2 Inductive-Feedback振盪器之模擬與量測-----------------------------------60 5-2-1 共振電路-------------------------------------------------------------60 5-2-2 主動電路-------------------------------------------------------------60 5-2-3 振盪電路-------------------------------------------------------------61 5-3 電感性回授之低功率交錯耦合壓控振盪器之模擬-----------------------------65 5-3-1 設計流程-------------------------------------------------------------65 5-3-2 共振電路-------------------------------------------------------------66 5-3-3 主動電路-------------------------------------------------------------66 5-3-4 振盪電路-------------------------------------------------------------67 5-3-5 預計規格列表---------------------------------------------------------71 5-3-6 特性比較-------------------------------------------------------------71 5-4 量測考量---------------------------------------------------------------72 第六章 結論與未來工作------------------------------------------------------73 參考文獻--------------------------------------------------------------------74

    [1] K. Kurokawa, “Some Basic Characteristics of Broadband Negative Resistance Oscillator Circuit”, The Bell System Technical Journal , July 1969.
    [2] G. Gonzalez, Microwave Transistor Amplifiers, Prentice Hall, 1984.
    [3] D. Pozar, Microwave Engineering, Wiley, 1998.
    [4] Behzad Razavi, Design Of Analog CMOS Integrated Circuits, Mcgraw Hill, 2001.
    [5] N. M. Nguyen, R.G. Meyer. “Start-up and Frequency Stability in High-Frequency Oscillators,” IEEE J. Solid-State Circuits, vol. 27, no. 5, pp. 810-820, May 1992.
    [6] C. H. Lee, A. Sutono, J. Laskar, “Development of a High-Power and High-Efficiency HBT MMIC VCO,”IEEE Radio and Wireless Conference, pp. 157-160, Aug. 2001.
    [7] E. Hegazi, A. A. Abidi, “Varactor Characteristics, Oscillator Tuning Curves,and AM-FM Conversion,” IEEE J. Solid-State Circuits, vol.38, no. 6, pp. 1033-1039, Jun. 2003.
    [8] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proc. IEEE, vol. 54, pp. 329–330, Feb. 1966.
    [9] Behzad Razavi, “Analysis, Modeling, and Simulation of Phase Noise in Monolithic Voltage-Controlled Oscillators,” IEEE Custom Integrated Circuits Conference, pp. 323-326, May 1995.
    [10] Behzad Razavi , “A Study of Phase Noise in CMOS Oscillator ,”IEEE J. of Solid-State Circuits ,vol. 31 ,pp. 331-343, March 1996.
    [11] Behzad Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
    [12] J. J. Rael and A. A. Abidi, “Physical Processes of Phase Noise in Differential LC Oscillator,” CICC, pp. 569-572, 2000.
    [13] A. Hajimiri, T. H. Lee, “A General Theory of Phase Noise in Electrical Oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, Feb. 1998.
    [14] A. Hajimiri, T. H. Lee, “Corrections to “A General Theory of Phase Noise in Electrical Oscillators”,” IEEE J. Solid-State Circuits, vol. 33, no. 6, Feb. 1998.
    [15] A. Hajimiri, T. H. Lee, “Design and Optimization of LC Oscaillators,” IEEE Computer-Aided Design, pp. 65-69, Nov. 1999.
    [16] A. Hajimiri, T. H. Lee, “Phase Noise in CMOS Differential LC Oscillators,” IEEE VLSI Circuits Dig. Tech. Papers, pp.48-51, Jun. 1998.
    [17] X. Li, S. Shekhar, D. J. Allstot, “Low-Power gm-boosted LNA and VCO Circuits in 0.18μm CMOS,” ISSCC Dig. Tech. Papers, pp. 534-535, 2005.
    [18] X. Li, S. Shekhar, D. J. Allstot, “Gm-Boosted Common-Gate LNA and Differential Colpitts VCO/QVCO in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2609-2619, Dec. 2005.
    [19] R. Aparicio, A. Hajimiri, “A CMOS Differential Noise-shifting Colpitts VCO,” ISSCC Dig. Tech. Papers, pp. 288-289, Feb., 2002.
    [20] S. L. J. Gierkink, S. Levantino, R. C. Frye, C. Samori, and V. Boccuzzi, “A low-phase-noise 5-GHz CMOS quadrature VCO using superharmonic coupling,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1148–1154, Jul. 2003.
    [21] D. Baek, T. Song, E. Yoon, and S. Hong, “8-GHz CMOS quadrature VCO using transformer-based LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 10, pp. 446–448, Oct. 2003.
    [22] Nam-Jin Oh, Sang-Gug Lee, “11-GHz CMOS Differential VCO with Back-Gate Transformer Feedback,”IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 733-735, Nov. 2005.
    [23] G. D. Astis, D.Cordeau, J. M. Paillot, L. Dascalescu, “A 5-GHz Fully Integrated Full PMOS Low-Phase-Noise LC VCO,”IEEE J. Solid-State Circuits, vol. 40, no. 10, pp. 2087-2091, Oct. 2005.
    [24] A. Hajimiri et al., “Design Issues in CMOS Differential LC Oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 717-724, May, 1999.
    [25] D. Ham, A. Hajimiri, “Concepts and Models in Optimization of Integrated LC VCOs,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 896-909, Jun. 2001.
    [26] A. Ismail, A. Abidi, “CMOS Differnetial LC Oscillator with Suppressed Up-Converted Flicker Noise,” ISSCC Dig. Tech. Papers, pp. 88-99, 2003.
    [27] M. Randall, T. Hock, “General Oscillator Characterization Using Linear Open-Loop S-parameters,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 6, pp. 1094-1100,Jun. 2001.

    下載圖示 校內:2007-07-24公開
    校外:2007-07-24公開
    QR CODE