| 研究生: |
陳怡傑 Chen, Yi-Jie |
|---|---|
| 論文名稱: |
平面六連桿機構之迴路與分支辨識 Circuit and Branch Identification of Planar Six-Bar Mechanisms |
| 指導教授: |
黃文敏
Hwang, Wen-Miin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 152 |
| 中文關鍵詞: | 平面六連桿機構 、死點構形 、迴路 、分支 |
| 外文關鍵詞: | branch, circuit, planar six-bar mechanism, dead-center configuration |
| 相關次數: | 點閱:180 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
迴路與分支缺陷為機構在尺度合成過程中,最常發生的缺陷問題。機構於尺度合成後,若機構在各指定通過位置之組合構形位於不同的迴路上,則此合成結果具有迴路缺陷。若機構在各指定通過位置之組合構形,雖然位於同一迴路上,但是卻位於不同的分支上,則此合成結果具有分支缺陷。
本文之目的在於探討平面六連桿機構之迴路與分支特性,進而提出適合平面六連桿機構之迴路與分支辨識準則。平面六連桿機構依輸入桿與固定桿之選定,可由Watt與Stephenson運動鏈衍生九型機構。利用四連桿組之耦桿點曲線、雙連桿、運動倒置、等效連桿組、傳動角連續性、包絡線理論與死點構形之幾何特徵等機構學基本原理,本文提出可行的方法進行各型機構之迴路與分支特性的分析與辨識。針對五種Stephenson型機構的死點構形位置分析及迴路與分支辨識,均可藉由SIIIB4型機構之位置分析閉合解與四種死點構形幾何特徵分析而得;針對四種Watt型機構的死點構形位置分析及迴路與分支辨識,均可藉由WIB4型機構之位置分析閉合解與四種死點構形幾何特徵分析而得。文中亦探討各類型機構,對應於單一耦桿點曲線所存在之最多迴路數目、分支數目與死點構形數目,以及對應於單一迴路所存在之最多分支數目。
本文所提出之迴路與分支辨識方法,將可用於各型平面六連桿機構尺度合成時,避免迴路與分支缺陷的形成。
Abstract
Branch and Circuit defects are the major problems encountered in the process of dimensional synthesis of mechanisms. A synthesized mechanism is said to have circuit defect if the assembly configurations of all specified positions do not fall on the same circuit. If the assembly configurations of all specified positions fall on the same circuit, nevertheless, fall on the different branches, the synthesized mechanism is said to have branch defect.
The main purposes of this work are to study the characteristics of circuits and branches of planar six-bar mechanisms, and to propose suitable criteria for circuit and branch identification of the mechanisms. There are nine types of six-bar mechanisms obtained by assigning the input and ground links on the Watt and Stephenson kinematic chains. Based on the fundamental concepts of coupler curve of four-bar linkage, dyad, kinematic inversion, equivalent linkage, continuity of transmission angle, theory of envelope, and geometric feature of dead-center configuration, feasible criteria are proposed for the analysis and identification of circuit and branch of planar six-bar mechanisms. The position analysis of dead-center configuration and identification of circuit and branch of five Stephenson mechanisms are obtained according to the closed form solution of SIIIB4 mechanism and four types of geometric features of dead-center configurations. The position analysis of dead-center configuration and identification of circuit and branch of four Watt mechanisms are obtained according to the closed form solution of WIB4 mechanism and four types of geometric features of dead-center configurations. The possible maximum number of circuits, branches, and dead-center configurations corresponding to a coupler curve of four-bar linkage and that of branches corresponding to a circuit are discussed for each planar six-bar mechanism.
The method proposed in this study for circuit and branch identification of each planar six-bar mechanism can be applied for the dimensional synthesis of planar six-bar mechanisms without branch and circuit defects.
參考文獻
01. Angeles, J. and Rojas, A., “An Optimization Approach to the Branching Problem of Plane Linkage Synthesis,” Proceedings of the Sixth World Congress on Theory of Machines and Mechanisms, pp.120-123, 1983.
02. Balli, S. S. and Chand, S., “Defects in Link Mechanisms and Solution Rectification,” Mechanism and Machine Theory, Vol. 37, pp. 851-876, 2002.
03. Bawab, S. and Li, H., “A New Circuit Identification Method in Four Position Four-Bar Linkages,” ASME Transactions, Journal of Mechanical Design, Vol. 119, pp. 417-419, 1997.
04. Beloiu, A. S. and Gupta, K. C., “Circuit Defect Elimination in Function Generating Mechanism,” Proceedings of the 5th Applied Mechanisms and Robotics Conference, Vol. 5, pp. 01-12, 1997a.
05. Beloiu, A. S. and Gupta, K. C., “A Unified Approach for the Investigation of Branch and Circuits Defects,” Mechanism and Machine Theory, Vol. 32, No. 5, pp. 539-557, 1997b.
06. Chase, T. R. and Mirth, J. A., “Circuit Analysis of Watt Chain Six-Bar Mechanisms,” ASME Transactions, Journal of Mechanical Design, Vol. 115, pp. 214-222, 1993a.
07. Chase, T. R. and Mirth, J. A., “Circuits and Branches of Single Degree-of-Freedom Planar Linkages,” ASME Transactions, Journal of Mechanical Design, Vol. 115, pp. 223-230, 1993b.
08. Chase, T. R. and Mirth, J. A., “Circuits Rectification for Four Precision Positions Synthesis of Four-Bar and Watt Six-Bar Linkages,” ASME Transactions, Journal of Mechanical Design, Vol. 117, pp. 612-619, 1995.
09. Chuang, J. C. and Waldron, K. J., “Synthesis with Mixed Motion and Path Generation Position Specifications,” ASME Transactions, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 105, No. 4, pp. 617-623, 1983.
10. Davis, H. P., Chase, T. R. and Mirth, J. A., “Circuit Analysis of Stephenson Chain Six-Bar Mechanisms,” Mechanism Synthesis and Analysis, ASME DE-Vol. 70, pp. 349-358, 1994.
11. Davis, H. P. and Chase, T. R., “Stephenson Chain Branch Analysis:Four Generic Stationary Configurations and One New Linkage Polynomial,” Mechanism Synthesis and Analysis, ASME DE-Vol. 70, pp. 359-367, 1994.
12. Dou, X. and Ting, K. L., “Module Approach for Branch Analysis of Multiloop Linkages/Manipulators,” Mechanism and Machine Theory, Vol. 33, No. 5, pp. 565-582, 1998.
13. Jie, W. and Krishnamurty, S., “Generating Multiple Mechanism Configurations with Branch-Circuit Attributes,” Proceedings of the 5th Applied Mechanisms and Robotics Conference, Vol. 30, pp. 01-08, 1997.
14. Kang, Y. H. and Yan, H. S., ÒSynthesizing Dead-Center and Uncertainty Configurations of Planar Six-Bar Linkages by Implicit Function Theorem,Ó Journal of the Chinese Society of Mechanical Engineers, Vol. 11, No. 4, pp. 325-333, 1990.
15. Krishnamurty, S. and Turcic, D. A., “A General Method of Determining and Eliminating Branching in Planar Multiloop Mechanisms,” ASME Transactions, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 110, pp. 412-422, 1988.
16. Litvin, L. F., “Application of Theorem of Implicit Function System Existence for Analysis and Synthesis of Linkages,” Mechanism and Machine Theory, Vol. 15, No. 3, pp. 115-125, 1980.
17. Mariappan, J. and Krishnamurty, S., “Determination of Branch Free and Circuit Free Solutions During Synthesis of Multiloop Mechanisms,” Mechanism Synthesis and Analysis, ASME DE-Vol. 70, pp. 329-336, 1994.
18. Mirth, J. A. and Chase, T. R., “Circuits Rectification for Four Precision Positions Synthesis of Stephenson Six-Bar Linkages,” ASME Transactions, Journal of Mechanical Design, Vol. 117, pp. 644-646, 1995.
19. Nielson, J. and Roth, B., ÒSolving the Input/Output Problem for Planar Mechanisms,Ó ASME Transactions, Journal of Mechanical Design, Vol. 121, pp. 206-211, 1999.
20. Park, F. C. and Kim, J. W., “Singularity Analysis of Closed Kinematic Chains,” ASME Transactions, Journal of Mechanical Design, Vol. 121, pp. 33-38, 1999.
21. Shukla, G. and Mallik, A. K., “Detection of a Crank in Six-Link Planar Mechanisms,” Mechanism and Machine Theory, Vol. 35, No. 3, pp. 911-926, 2000.
22. Ting, K. L., “Branch and Dead Position Problems of N-bar Linkages,” ASME DE-Vol. 65-2, Advances in Design Automation-Vol. 2, 1993.
23. Ting, K. L. and Dou, X., ÒClassification and Branch Identification of Stephenson Six-Bar Chains,Ó Mechanism and Machine Theory, Vol. 31, No. 3, pp. 283-295, 1996.
24. Tinubu, S. O. and Gupta, K. C., “Optimal Synthesis of Function Generators Without the Branch Defect,” ASME Transactions, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 106, pp. 348-354, 1984.
25. Tylaska, T. and Kazerounian, K., “Synthesis of Defect Free Six-Bar Linkages for Body Guidance Through up to Six Finitely Separated Positions,” Mechanism Synthesis and Analysis, ASME DE-Vol. 70, pp. 369-376, 1994.
26. Waldron, K. J., “Elimination of the Branch Problem in Graphical Burmester Mechanism Synthesis for Four Finitely Separated Positions,” ASME Transactions, Journal of Engineering for Industry, Vol. 97, pp. 176-182, 1976.
27. Waldron, K. J., “Graphical Solution of the Branch and Order Problems of Linkage Synthesis for Multiply Separated Positions,” ASME Transactions, Journal of Engineering for Industry, Vol. 99, pp. 591-597, 1977.
28. Waldron, K. J. and Stevensen, E. N. Jr., “Elimination of Branch, Grashof, and Order Defects in Path-Angle Generation and Function Generation Synthesis,” ASME Transactions, Journal of Mechanical Design, Vol. 101, pp. 428-437, 1979.
29. Waldron, K. J. and Sreenivasan, S. V., “A Study of the Position Problem for Multi-Circuit Mechanisms,” Mechanism Synthesis and Analysis, ASME DE-Vol. 70, pp. 337-347, 1994.
30. Waldron, K. J. and Sreenivasan, S. V., ÒA Study of the Solvability of the Position Problem for Multi-Circuit Mechanisms by Way of Example of the Double Butterfly Linkage,Ó ASME Transactions, Journal of Mechanical Design, Vol. 118, pp. 390-395, 1996.
31. Watanabe, K. and Funabashi, H., “Kinematic Analysis of Stephenson’s Six-Link Mechanisms (1st Report, Discrimination of Composition Loops),” Bulletin of JSME, Vol. 27, No. 234, pp. 2863-2870, 1987a.
32. Watanabe, K. and Funabashi, H., “Kinematic Analysis of Stephenson’s Six-Link Mechanisms (2nd Report, Index of Transmission Characteristics),” Bulletin of JSME, Vol. 27, No. 234, pp. 2871-2878, 1987b.
33. Wu, L. I. and Chiang C. H., ÒDead-Center Configurations of Planar Complex Eight-Bar Linkages,Ó Journal of the Chinese Society of Mechanical Engineers, Vol. 14, No. 5, pp. 492-503, 1993.
34. Yan, H. S. and Chiou, S. T., “An Algorithm for the Optimal Synthesis of Complex Function Generations, ” Engineering Optimization, Vol. 12, pp. 75-88, 1987.
35. Yan, H. S. and Wu, L. I., “The Stationary Configurations of Planar Six-bar Kinematic Chains,” Mechanism and Machine Theory, Vol. 23, No. 4, pp. 287-293, 1988.
36. Zlatanov, D., Fenton, R. G. and Benhabib, B., “Identification and Classification of the Singular Configurations of Mechanisms,” Mechanism and Machine Theory, Vol. 33, No. 6, pp. 743-760, 1998.
37. 車慧中,“平面六連桿與空間四連桿機構分支問題之研究”,碩士論文,國立成功大學機械工程學系,台南,1991。
38. 柯平山,“平面四連桿和六連桿機構迴路與分支之辨識”,碩士論文,國立成功大學機械工程學系,台南,2002。
39. 殷啟勝,“平面六連桿機構運動型態之分類”,碩士論文,國立成功大學機械工程學系,台南,1990。
40. 翁維宏,“平面六連桿機構之分支辨識”,碩士論文,國立成功大學機械工程學系,台南,2003。
41. 梁慧音,“史帝文生六連桿機構之電腦輔助運動分析”,碩士論文,國立台灣科技大學機械工程學系,台北,2002。
42. 張敬宏,“平面連桿機構之迴路分析”,碩士論文,國立成功大學機械工程學系,台南,2000。
43. 黃文敏,“平面連桿機構之迴路分析”,行政院國家科學委員會研究計畫報告,NSC90-2212-E-006-058,2002。
44. 黃文敏,“平面六連桿機構迴路與分支之辨識”,行政院國家科學委員會研究計畫報告,NSC91-2212-E-006-084,2003。
45. 葉韻靜,“驅動接頭在五桿迴路之Stephenson六連桿機構之運動分析”,碩士論文,國立台灣科技大學機械工程學系,台北,2003。