簡易檢索 / 詳目顯示

研究生: 謝瑞夫
Hsieh, Jui-Fu
論文名稱: 添加甲烷或乙炔於氬氣電漿中對於非平衡磁控濺鍍沉積含氫非晶質碳膜性質之影響
Influence of adding methane or acetylene into argon plasma to the properties of hydrogenated amorphous carbon films deposited by unbalanced magnetron sputtering
指導教授: 廖峻德
Liao, Jiunn-Der
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 79
中文關鍵詞: 含氫非晶質碳膜光學放射光譜儀甲烷/氬氣乙炔/氬氣非平衡磁控濺鍍
外文關鍵詞: optical emission spectrometer, unbalanced magnetron sputtering, methane/argon, acetylene/argon, hydrogenated amorphous carbon
相關次數: 點閱:101下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將以非平衡磁控濺鍍法在矽晶圓上沉積含氫非晶質碳膜,各別將甲烷與乙炔以不同通量混入固定通量(25 sccm)的氬氣,以直流電源激發氣體產生電漿,沉積時間固定為120分鐘。在濺鍍製程中,同時以光學放射光譜儀(OES)透過真空腔體窗口記錄電漿內激發物種的種類與強度。以拉曼光譜儀(Raman)與傅立葉轉換紅外光譜儀(FTIR)來量測含氫非晶質碳膜表面的結構並作定性分析。以奈米壓痕機量測碳膜的硬度、楊氏係數、抵抗側向刮痕的能力與表面的摩擦係數。掃瞄式電子顯微鏡量測膜厚與觀察表面形貌;高阻抗電阻儀量測碳膜電阻值。由OES光譜可知,Hα與Hβ的強度在甲烷/氬氣電漿隨流量變化程度比乙炔/氬氣電漿大,從流量增加來觀察激發物種強度變化,Hα與Hβ比CH*與C2*更容易受到電漿激發。隨流量增加單位氣體分子獲得能量降低,推測甲烷主要解離成CH3而乙炔主要解離成C2H。從Raman與FTIR光譜結果得知,當甲烷或乙炔流量增加,碳膜表面的sp3 CH3與sp3 CH2鍵結增加,使碳膜的sp3/ sp2比增加,此外sp2結構將從苯環狀碳環轉變成烯烴碳鏈;乙炔碳膜的sp3/ sp2比增加幅度比甲烷碳膜小,因為甲烷直接解離成CH3即可形成sp3 C-H結構,但乙炔解離成C2H後需要再進一步反應才能形成sp3 C-H結構。氫在碳膜中阻擋碳碳原子間形成sp3 C-C並且形成sp3 C-H,造成碳膜硬度隨C-H鍵結增加而下降,10 sccm的甲烷碳膜與乙炔碳膜硬度降至2.75 GPa與5.86 GPa。由於C-H鍵結將鈍化碳膜表面,使甲烷與乙炔碳膜的摩擦係數隨著表面C-H結構增加而降低。由於碳膜的表面sp3 C-H鍵結增加與sp2結構從碳環轉變成碳鏈,導致甲烷碳膜電阻值隨流量而劇烈增加而乙炔碳膜電阻值則隨流量而緩和增加。由激發氣態物種觀察與碳膜性質比對,沉積後的碳膜機械性質主要是受到表面形成的sp3 C-H結構影響,sp3 C-H結構的形成則與甲烷/氬氣和乙炔/氬氣電漿的解離效率有密切關聯。

    Hydrogenated Amorphous Carbon (a-C:H) films was deposited on the silicon substrate by unbalanced magnetron sputtering with the addition of methane (CH4) or acetylene (C2H2) and the variation of flowing rates from 2 to 10 sccm into argon plasma. The flowing rate of argon was constant at 25 sccm and the deposition time was fixed at 120 min. Optical Emission Spectrometer (OES) was employed in analyzing the excited species in methane or acetylene/argon plasma through a view port of the processing chamber. The quality of a-C:H films, including their chemical structure, nano-hardness, friction coefficient, and surface resistance, was examined. From OES spectra, the emission intensity of atomic hydrogen Hα and Hβ for methane/argon plasma was found higher than that for acetylene/argon plasma. In addition, by increasing the flowing rate of methane or acetylene, the intensity of Hα, Hβ, CH*, C2* significantly changed. The excitation of Hα and Hβ were relatively simple, in comparison with that of CH* and C2*. It is assumed that CH4 and C2H2 were firstly ionized into CH3 and C2H, respectively. From Raman and FTIR spectra, as increased the flowing rate of methane or acetylene, sp3 CH3 and sp3 CH2 structure increased on surface that caused sp3/sp2 ratio of a-C:H films increased; in addition, sp2 structure transformed from aromatic rings into olefinic chains. Owing to the varied lengths of pathway to ionize the hydrocarbon species, methane was more affected than acetylene by the formation of sp3 C-H on the a-C:H surface. Hydrogen in a-C:H films blocked carbon atoms to form the sp3 C-C (cross-linking) and formed sp3 C-H instead which caused nano-hardness of a-C:H films decreased with the increased flowing rate of methane or acetylene. Nano-hardness of a-C:H films decreased to 2.75 GPa and 5.86 GPa at the flowing rate 10 sccm of methane and acetylene. Due to sp3 C-H increased and sp2 structure transformed, the resistance of a-C:H films increased with the flowing rate of methane or acetylene. From the observations of the excited gaseous species and the quality of a-C:H films, the mechanical properties of a-C:H films were most probably affected by the formation of sp3 C-H structure, which was closely associated with the efficiency of ionization from methane/argon or acetylene/argon plasma.

    目錄 表目錄 X 圖目錄 XI 第一章 序論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻回顧 3 1.3.1 濺鍍沉積非晶質碳膜 3 1.3.2 氫碳比不同之前驅氣體對非晶質碳膜性質之影響 3 1.3.3 光學放射光譜儀在濺鍍製程上之應用 4 1.4 研究目的及架構 6 第二章 理論基礎 7 2.1 非晶質碳膜概論 7 2.1.1 非晶質碳膜之組成與結構 7 2.1.2 非晶質碳膜之種類 9 2.2 非平衡磁控濺鍍系統 12 2.2.1 濺鍍原理 12 2.2.2 非平衡磁控濺鍍之優點 14 2.3 含氫非晶質碳膜成膜機制理論 16 2.4 電漿化學 20 2.4.1 電漿簡介 20 2.4.2 電漿診斷 21 2.4.3 CH4電漿與C2H2電漿內的激發物種 22 第三章 研究材料與方法 24 3.1 實驗流程 24 3.2 非平衡磁控濺鍍系統 26 3.2.1 真空系統 26 3.2.2 電漿產生系統 26 3.3 實驗材料 28 3.3.1 氣體 28 3.3.2 靶材 28 3.3.3 基材 28 3.4 鍍膜步驟 29 3.5 分析儀器原理與量測方法 30 3.5.1 光學放射光譜儀 30 3.5.2 拉曼光譜儀 32 3.5.3 傅立葉轉換紅外光譜儀 34 3.5.4 場發射掃瞄式電子顯微鏡 35 3.5.5 奈米壓痕試驗機 36 3.5.6 高電阻量測儀 39 第四章 結果與討論 40 4.1 引言 40 4.2 濺鍍製程之CH4與C2H2電漿狀態 40 4.3 碳膜表面結構分析 48 4.3.1 拉曼光譜 48 4.3.2 傅立葉轉換紅外光譜 56 4.4 碳膜之機械性質與力學性質量測 62 4.4.1 硬度與楊氏係數量測 62 4.4.2 側向力測試與摩擦係數量測 64 4.5 碳膜膜厚量測與橫切面形貌觀察 66 4.6 碳膜表面電阻量測 70 結論 72 參考文獻 73 自述 79

    [1] F.P.Bundy, H.T.Hall, H.M.Strong, and R.H.Wentorf, "MAN-MADE DIAMONDS," Nature, vol. 176, pp. 51, 1955.
    [2] Y.-C. Lee, D. Pradhan, S.-J. Lin, C.-T. Chia, H.-F. Cheng, and I. N. Lin, "Effect of surface treatment on the electron field emission property of nano-diamond films," Diamond and Related Materials, vol. 14, pp. 2055-2058, 2005.
    [3] J. J. Liu, D. Y. T. Chiu, D. C. Morton, D. H. Kang, V. V. Zhirnov, J. J. Hren, and J. J. Cuomo, "Band gap structure and electron emission property of chemical-vapor-deposited diamond films," Solid-State Electronics, vol. 45, pp. 915-919, 2001.
    [4] V. Medeliene, V. Stankevic, and G. Bikulcius, "The influence of artificial diamond additions on the formation and properties of an electroplated copper metal matrix coating," Surface and Coatings Technology, vol. 168, pp. 161-168, 2003.
    [5] A.Grill, "Diamond-Like Carbon: State of the Art " Diamond and Related Materials, vol. 8, pp. 428-434, 1999.
    [6] S. Aisenberg and R. Chabot, "Ion-Beam Deposition of Thin Films of Diamondlike Carbon," Journal of Applied Physics, vol. 42, pp. 2953-2958, 1971.
    [7] Y. Lifshitz, "Diamond-like carbon -- present status," Diamond and Related Materials, vol. 8, pp. 1659-1676, 1999.
    [8] J. Robertson, "Properties of diamond-like carbon," Surface and Coatings Technology, vol. 50, pp. 185-203, 1992.
    [9] A. A. Voevodin and M. S. Donley, "Preparation of amorphous diamond-like carbon by pulsed laser deposition: a critical review," Surface and Coatings Technology, vol. 82, pp. 199-213, 1996.
    [10] X. Lu, M. Li, X. Tang, and J. Lee, "Micromechanical properties of hydrogenated diamond-like carbon multilayers," Surface and Coatings Technology, vol. 201, pp. 1679-1684, 2006.
    [11] E. Martinez, J. L. Andujar, M. C. Polo, J. Esteve, J. Robertson, and W. I. Milne, "Study of the mechanical properties of tetrahedral amorphous carbon films by nanoindentation and nanowear measurements," Diamond and Related Materials, vol. 10, pp. 145-152, 2001.
    [12] C. Charitidis, S. Logothetidis, and P. Douka, "Nanoindentation and nanoscratching studies of amorphous carbon films," Diamond and Related Materials, vol. 8, pp. 558-562, 1999.
    [13] R. W. Lamberton, J. F. Zhao, D. Magill, J. A. McLaughlin, and P. D. Maguire, "A study of ultra-thin film ion beam deposited (IBD) hydrogenated amorphous carbon (a-C:H) using atomic force microscopy (AFM) and transmission electron microscopy (TEM)," Diamond and Related Materials, vol. 7, pp. 1054-1058, 1998.
    [14] B. P. McNamara, H. Murphy, and M. M. Morshed, "Adhesion properties of diamond-like coated orthopaedic biomaterials," Diamond and Related Materials, vol. 10, pp. 1098-1102, 2001.
    [15] A. Grill, "Amorphous carbon based materials as the interconnect dielectric in ULSI chips," Diamond and Related Materials, vol. 10, pp. 234-239, 2001.
    [16] A. Bubenzer, B. Dischler, G. Brandt, and P. Koidl, "rf-plasma deposited amorphous hydrogenated hard carbon thin films: Preparation, properties, and applications," Journal of Applied Physics, vol. 54, pp. 4590-4595, 1983.
    [17] N. M. J. Conway, A. C. Ferrari, A. J. Flewitt, J. Robertson, W. I. Milne, A. Tagliaferro, and W. Beyer, "Defect and disorder reduction by annealing in hydrogenated tetrahedral amorphous carbon," Diamond and Related Materials, vol. 9, pp. 765-770, 2000.
    [18] C. Wild and P. Koidl, "Structured ion energy distribution in radio frequency glow-discharge systems," Applied Physics Letters, vol. 54, pp. 505-507, 1989.
    [19] J. J. Cuomo, J. P. Doyle, J. Bruley, and J. C. Liu, "Sputter deposition of dense diamond-like carbon films at low temperature," Applied Physics Letters, vol. 58, pp. 466-468, 1991.
    [20] S. Logothetidis, "Hydrogen-free amorphous carbon films approaching diamond prepared by magnetron sputtering," Applied Physics Letters, vol. 69, pp. 158-160, 1996.
    [21] B.Window and N.Savvides, "Unbalanced dc magnetrons as sources of high ion fluxes," The Journal of Vacuum Science and Technology A, vol. 4, pp. 453-456, 1986.
    [22] J. Schwan, S. Ulrich, H. Roth, H. Ehrhardt, S. R. P. Silva, J. Robertson, R. Samlenski, and R. Brenn, "Tetrahedral amorphous carbon films prepared by magnetron sputtering and dc ion plating," Journal of Applied Physics, vol. 79, pp. 1416-1422, 1996.
    [23] T. Schwarz-Selinger, A. von Keudell, and W. Jacob, "Plasma chemical vapor deposition of hydrocarbon films: The influence of hydrocarbon source gas on the film properties," Journal of Applied Physics, vol. 86, pp. 3988-3996, 1999.
    [24] K. H. Lai, C. Y. Chan, M. K. Fung, I. Bello, C. S. Lee, and S. T. Lee, "Mechanical properties of DLC films prepared in acetylene and methane plasmas using electron cyclotron resonance microwave plasma chemical vapor deposition," Diamond and Related Materials, vol. 10, pp. 1862-1867, 2001.
    [25] A. von Keudell, T. Schwarz-Selinger, and W. Jacob, "Simultaneous interaction of methyl radicals and atomic hydrogen with amorphous hydrogenated carbon films," Journal of Applied Physics, vol. 89, pp. 2979-2986, 2001.
    [26] J.Wagner, C.Wild, F.Pohl, and P.Koidl, "Optical studies of hydrogenated amorphous carbon plasma deposition," Applied Physics Letters vol. 48, pp. 3, 1985.
    [27] G. Cicala, P. Bruno, A. M. Losacco, and G. Mattei, "Plasma deposition of hydrogenated diamond-like carbon films from CH4-Ar mixtures," Surface and Coatings Technology, vol. 180-181, pp. 222-226, 2004.
    [28] H. J. Ryu, S. H. Kim, and S. H. Hong, "Effect of deposition pressure on bonding nature in hydrogenated amorphous carbon films processed by electron cyclotron resonance plasma enhanced chemical vapor deposition," Materials Science and Engineering A, vol. 277, pp. 57-63, 2000.
    [29] J. C. Angus and C. C. Hayman, "Low-Pressure, Metastable Growth of Diamond and ``Diamondlike' Phases," Science, vol. 241, pp. 913-921, 08/19 1988.
    [30] M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes. London: Academic Press, 1996.
    [31] J. Robertson, "Diamond-like amorphous carbon," Materials Science and Engineering: R: Reports, vol. 37, pp. 129-281, 2002.
    [32] N. A. Marks, D. R. McKenzie, B. A. Pailthorpe, M. Bernasconi, and M. Parrinello, "Microscopic Structure of Tetrahedral Amorphous Carbon," Physical Review Letters, vol. 76, pp. 768, 1996.
    [33] N. A. Marks, D. R. McKenzie, B. A. Pailthorpe, M. Bernasconi, and M. Parrinello, "Ab initio simulations of tetrahedral amorphous carbon," Physical Review B, vol. 54, pp. 9703, 1996.
    [34] G. Kopidakis, C. Z. Wang, C. M. Soukoulis, and K. M. Ho, "Hydrogen-induced structural changes in tetrahedral amorphous carbon," Physical Review B, vol. 58, pp. 14106, 1998.
    [35] O. Almen and G. Bruce, "Collection and sputtering experiments with noble gas ions," Nuclear Instruments and Methods, vol. 11, pp. 257-278, 1961.
    [36] A. M. Efremov, G.-H. Kim, J.-G. Kim, A. V. Bogomolov, and C.-I. Kim, "On the applicability of self-consistent global model for the characterization of Cl2/Ar inductively coupled plasma," Microelectronic Engineering, vol. 84, pp. 136-143, 2007.
    [37] B. Chapman, Glow Discharge Process – Sputtering And Plasma Etching: John Wiley & Sons, 1980.
    [38] W. Möller, " Plasma and surface modeling of the deposition of hydrogenated carbon films from low-pressure methane plasmas," Applied Physics A: Materials Science & Processing, vol. 56, pp. 527-546, 1993.
    [39] M. Weiler, S. Sattel, K. Jung, H. Ehrhardt, V. S. Veerasamy, and J. Robertson, "Highly tetrahedral, diamond-like amorphous hydrogenated carbon prepared from a plasma beam source," Applied Physics Letters, vol. 64, pp. 2797-2799, 1994.
    [40] J. Robertson, "The deposition mechanism of diamond-like a-C and a-C:H," Diamond and Related Materials, vol. 3, pp. 361-368, 1994.
    [41] A.Grill, Cold Plasma in Materials Fabrication-From Fundamentals to Application. NewYork: IEEE Press, 1994.
    [42] R. W. B. Pearse and A. G. Gaydon, The identification of molecular spectra. London: Chapman & Hall, 1965.
    [43] G. Le Du, N. Celini, F. Bergaya, and F. Poncin-Epaillard, "RF plasma-polymerization of acetylene: Correlation between plasma diagnostics and deposit characteristics," Surface and Coatings Technology, vol. 201, pp. 5815-5821, 2007.
    [44] M. M. Larijani, F. Le Normand, and O. Cregut, "An optical emission spectroscopy study of the plasma generated in the DC HF CVD nucleation of diamond," Applied Surface Science, vol. 253, pp. 4051-4059, 2007.
    [45] M. Veres, M. Koos, and I. Pocsik, "IR study of the formation process of polymeric hydrogenated amorphous carbon film," Diamond and Related Materials, vol. 11, pp. 1110-1114, 2002.
    [46] C. Donnet, T. Mogne, L. Ponsonnet, M. Belin, A. Grill, V. Patel, and C. Jahnes, "The respective role of oxygen and water vapor on the tribology of hydrogenated diamond-like carbon coatings," Tribology Letters, vol. 4, pp. 259-265, 1998.
    [47] S. Peter, K. Graupner, D. Grambole, and F. Richter, "Comparative experimental analysis of the a-C:H deposition processes using CH4 and C2H2 as precursors," Journal of Applied Physics, vol. 102, pp. 053304-18, 2007.
    [48] M. Weiler, R. Kleber, K. Jung, and H. Ehrhardt, "Characterization of a CH4-RF-plasma by ion flux, Langmuir probe, and optical emission spectroscopy measurements," Diamond and Related Materials, vol. 1, pp. 121-126, 1992.
    [49] J. Benedikt, K. G. Y. Letourneur, M. Wisse, D. C. Schram, and M. C. M. van de Sanden, "Plasma chemistry during deposition of a-C:H," Diamond and Related Materials, vol. 11, pp. 989-993, 2002.
    [50] J. R. Doyle, "Chemical kinetics in low pressure acetylene radio frequency glow discharges," Journal of Applied Physics, vol. 82, pp. 4763-4771, 1997.
    [51] G. Socrates, Infrared and Raman Characteristic Group Frequencies Tables and Charts. UK: JOHN WILEY & SONS, LTD, 2001.
    [52] M. A. Tamor and W. C. Vassell, "Raman ``fingerprinting' of amorphous carbon films," Journal of Applied Physics, vol. 76, pp. 3823-3830, 1994.
    [53] A. C. Ferrari and J. Robertson, "Interpretation of Raman spectra of disordered and amorphous carbon," Physical Review B, vol. 61, pp. 14095, 2000.
    [54] K. W. R. Gilkes, S. Prawer, K. W. Nugent, J. Robertson, H. S. Sands, Y. Lifshitz, and X. Shi, "Direct quantitative detection of the sp3 bonding in diamond-like carbon films using ultraviolet and visible Raman spectroscopy," Journal of Applied Physics, vol. 87, pp. 7283-7289, 2000.
    [55] I. Géraud-Grenier, V. Massereau-Guilbaud, and A. Plain, "Characterization of particulates and coatings created in a 13.56 MHz radiofrequency methane plasma," Surface and Coatings Technology, vol. 187, pp. 336-342, 2004.
    [56] V. Stelmashuk, H. Biederman, D. Slavsk, M. Trchov, and P. Hlidek, "Rf magnetron sputtering of polypropylene," Vacuum, vol. 75, pp. 207-215, 2004.
    [57] E. Tomasella, L. Thomas, M. Dubois, and C. Meunier, "Structural and mechanical properties of a-C:H thin films grown by RF-PECVD," Diamond and Related Materials, vol. 13, pp. 1618-1624, 2004.
    [58] J. F. Zhao, P. Lemoine, Z. H. Liu, J. P. Quinn, P. Maguire, and J. A. McLaughlin, "A study of microstructure and nanomechanical properties of silicon incorporated DLC films deposited on silicon substrates," Diamond and Related Materials, vol. 10, pp. 1070-1075, 2001.
    [59] F. C. Marques, R. G. Lacerda, G. Y. Odo, and C. M. Lepienski, "On the hardness of a-C:H films prepared by methane plasma decomposition," Thin Solid Films, vol. 332, pp. 113-117, 1998.
    [60] A. Erdemir, O. L. Eryilmaz, I. B. Nilufer, and G. R. Fenske, "Effect of source gas chemistry on tribological performance of diamond-like carbon films," Diamond and Related Materials, vol. 9, pp. 632-637, 2000.
    [61] M. Rusop, S. Adhikari, A. M. M. Omer, T. Soga, T. Jimbo, and M. Umeno, "Effects of methane gas flow rate on the optoelectrical properties of nitrogenated carbon thin films grown by surface wave microwave plasma chemical vapor deposition," Diamond and Related Materials, vol. 15, pp. 371-377, 2006.
    [62] P. I. Nikitin, A. A. Beloglazov, A. Y. Toporov, M. V. Valeiko, V. I. Konov, A. Perrone, A. Luches, L. Mirenghi, and L. Tapfer, "Amorphous magnetic films produced by pulsed laser deposition," Journal of Applied Physics, vol. 82, pp. 1408-1415, 1997.
    [63] R. D. Mansano, M. Massi, L. S. Zambom, P. Verdonck, P. M. Nogueira, H. S. Maciel, and C. Otani, "Effects of the methane content on the characteristics of diamond-like carbon films produced by sputtering," Thin Solid Films, vol. 373, pp. 243-246, 2000.
    [64] P. Wood, T. Wydeven, and O. Tsuji, "Influence of reactant gas composition on selected properties of N-doped hydrogenated amorphous carbon films," Thin Solid Films, vol. 258, pp. 151-158, 1995.
    [65] E. Mounier, F. Bertin, M. Adamik, Y. Pauleau, and P. B. Barna, "Effect of the substrate temperature on the physical characteristics of amorphous carbon films deposited by d.c. magnetron sputtering," Diamond and Related Materials, vol. 5, pp. 1509-1515, 1996.

    下載圖示 校內:2009-07-17公開
    校外:2009-07-17公開
    QR CODE