簡易檢索 / 詳目顯示

研究生: 李怡禎
Li, Yi-chen
論文名稱: [氧化亞銅/氧化鎵]多層膜高溫退火之結構與電傳輸特性研究
Structure and Electrical Transport of High-Temperature Annealed [Cu2O/Ga2O3] Multilayers
指導教授: 黃榮俊
Huang, Jung-chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 90
中文關鍵詞: 快速熱退火透明導電氧化物
外文關鍵詞: Transparent conductive oxides, Rapid thermal annealing
相關次數: 點閱:72下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗工作利用離子束濺鍍系統(Ion-beam sputter system)在室溫下製備[氧化亞銅(Cu2O)/ 氧化鎵(Ga2O3)]20週期之多層膜於c-plane氧化鋁基板上,進一步將[Cu2O/Ga2O3]20多層膜利用快速熱退火(Rapid Thermal Annealing, RTA)處理來製備具有銅鐵礦(delafossite)結構之p型透明導電氧化物薄膜。首先,固定Cu2O之單層厚度為32Å,改變氧化鎵Ga2O3單層厚度(26 ~ 83 Å),在1100°C下進行退火60分鐘,其結果發現[Cu2O(32 Å) / Ga2O3(53 Å)]20為最佳厚度比,該薄膜具有銅鐵礦結構且具有最少之雜相存在。利用同步輻射吸收光譜可以得知該薄膜中Cu及Ga分別為+1及+3價。此外,由於使用單晶氧化鋁作為基板,由穿透式電子顯微鏡之元素分析結果得知,高溫RTA會使得Al擴散至薄膜中,且在靠近基板處高達14%,因此所形成之銅鐵礦結構為Cu(GaxAl1-x)O2。該薄膜為電洞型傳導,其載子濃度為6.37 x 1017 cm-3;其透光率在可見光區可達80 %,且其直接及間接能隙分別為3.5及3.24電子伏特。
    另外,針對比例最佳化之[Cu2O(32 Å) / Ga2O3(53 Å)]20多層膜進一步改變RTA時間(5、15、30、45以及60分鐘),我們發現30分鐘RTA之[Cu2O(32 Å) / Ga2O3(53 Å)]20多層膜可以得到單相且具有c軸紋理之銅鎵鋁氧薄膜,其晶粒大小約350 nm,且該薄膜之載子濃度僅具有3.6 x 1016 cm-3,藉由元素成分分析得知,Cu : (Ga+Al) = 1.14 : 0.72,其+3價離子(MIII)減少可能導致MIIIO2之O無法有效與MIII原子鍵結形成偽四面體結構,進而形成額外結構缺陷,亦即捕捉態(trap states),因此造成電洞濃度下降。此外,將多層膜各層厚度減半以及降低快速熱退火溫度至1050°C也可以製備單相且c軸紋理之銅鎵鋁氧薄膜,其晶粒大小約為225 nm,電洞載子濃度則為2.32 x 1016 cm-3。藉由元素成分分析得知,Cu : (Ga+Al) = 0.98 : 0.73,其結果與30分鐘1100°C快速熱退火結果類似。

    We demonstrate the p-type transparent conducting oxides of Cu-based delafossite structure materials using an ion-beam sputter system. Multilayers of Cu2O and Ga2O3 with 20 cycles were deposited on c-plane sapphire substrates at room-temperature, and then annealed at 1100°C for 60 minutes by a rapid thermal annealing (RTA) system. The layer thickness of Cu2O and Ga2O3 were respectively fixed at 32 Å and varied from 26 ~ 83 Å. Optimized Ga2O3 thickness, 53 Å, can form the delafossite structure, but exists some weak secondary phase. X-ray absorption spectroscopy analysis indicates the valence of Cu and Ga in [Cu2O(32 Å) / Ga2O3(53 Å)]20 multilayers are +1 and +3. The absorption spectroscopy is also similar to CuGaO2 bulk materials. Transmission Electron Microscopy (TEM) is also used to investigate the microstructure and elements specifics. The results show a grain size of ~350 nm in diameter, the Al diffusion from substrates into multilayers as well as 1 : 0.9 ratio of Cu versus (Ga and Al). The results indicate the RTA [Cu2O(32 Å) / Ga2O3(53 Å)]20 on sapphire form Cu(GaxAl1-x)O2 delafossite structure. Besides, the films show a hole concentration of 6.37 x 1017 cm-3 and 80 % transparency in visible region. The bandgap of films respectively shows a direct and an indirect bandgap of 3.5 and 3.24 eV for n = 0.5 and 2 in Tauc-Sunds formula.
    To suppress the secondary phase and improved structure, we include two methods: (i) changing the annealing time of [Cu2O(32 Å) / Ga2O3(53 Å)]20 multilayers from 5 to 60 minutes as well as (ii) decreasing the layer thickness of Cu2O and Ga2O3 and annealing temperature. 30min RTA multilayers show a single-phase and highly c-axis textured delafossite structure and the corresponding hole concentration (nc) is 3.6 x 1016 cm-3. 1050°C annealing [Cu2O(16 Å) / Ga2O3(26 Å)]20 also show similar results, a single-phase and highly c-axis textured delafossite structure, with 30 min RTA films and the nc is 2.32 x 1016 cm-3. The decreasing nc of these films is associated with the lower ratio of (Ga and Al) from 0.9 to 0.7. Decreasing (Ga and Al) ratio could impede the formation of MIIIO2 to pesudo-tetrahedral coordination, which creates additional structure defects, i.e. trap states, and result in a decrease of hole carrier concentration.

    第一章 緒論與材料分類 1 1-1 電洞型透明導電氧化物之形成.............3 1-1-1 價帶化學調制...................3 1-1-2 材料結構需求...................5 1-2 電洞型透明氧化物材料之分類.............7 1-2-1 銅基銅鐵礦結構材料(Cu MIIIO2) ..........7 1-2-2 銀基銅鐵礦結構材料(Ag MIIIO2) ..........8 1-2-3 非化學計量比與摻雜之銅鐵礦材料.........9 1-2-4 二元(binary)p型透明氧化物...........16 第二章 文獻回顧與研究動機 22 2-1 重要文獻回顧 ..................22 2-1-1 CuAlO2.....................22 2-1-2 CuGaO2.....................28 2-1-3 CuInO2.....................32 2-2 研究動機.....................35 第三章 實驗方法 37 3-1 樣品製備.....................37 3-1-1離子束濺鍍系統.................37 3-1-2樣品製備流程..................41 3-1-3退火處理儀器..................42 3-2實驗量測儀器...................45 3-2-1 X-ray繞射儀...................45 3-2-2 X-ray吸收光譜..................46 3-2-3穿透式電子顯微鏡................53 3-2-4霍爾效應量測..................54 3-2-5紫外線/可見光分光光譜儀.............55 第四章 研究結果與討論 58 4-1快速熱退火之[Cu2O(32 Å) / Ga2O3(x Å)]多層膜(x = 26 ~ 83 Å)........................58 4-1-1 結構特性....................58 4-1-2 元素比例分析..................66 4-1-3 電及光學特性..................68 4-2不同快速熱退火時間之[Cu2O(32 Å) / Ga2O3(53 Å)]20多層膜........................71 4-2-1 結構與成分比例研究...............71 4-2-2 電性結果....................75 4-3 [Cu2O(16 Å) / Ga2O3(26 Å)]20多層膜快速熱退火之結果........................78 第五章 結論 83 附錄一........................85 附錄二........................87 附錄三........................89

    第一章
    [1] K. Badekar, Ann. Phys. 22, 749 (1907).
    [2] R.G. Gordon, MRS Bull. 52 (August 2000).
    [3] W.R. Sinclair, F.G. Peters, D.W. Stillinger, S.E. Koonce, J. Electrochem. Soc. 112, 1096 (1965).
    [4] B.H. Choi, H.B. Im, J.S. Song, K.H. Yoon, Thin Solid Films 193, 712 (1990).
    [5] G. Haacke, W.E. Mealmaker, L.A. Siegel, Thin Solid Films 55, 67 (1978).
    [6] T. Minami, H. Sonohara, S. Takata, H. Sato, Jpn. J. Appl. Phys., Part 2: Lett. 33, L1693 (1994).
    [7] T. Otabe, K. Ueda, A. Kudoh, H. Hosono, H. Kawazoe, Appl. Phys. Lett. 72, 1036 (1998).
    [8] D.D. Edwards, T.O. Mason, F. Goutenoire, K.R. Poeppelmeier, Appl. Phys. Lett. 70, 1706 (1997).
    [9] T. Minami, T. Kakumu, K. Shimokawa, S. Takata, Thin Solid Films 317, 318 (1998).
    [10] T. Omata, N. Ueda, K. Ueda, H. Kawazoe, Appl. Phys. Lett. 64, 1077 (1994)
    [11] R.L. Cornia, J.B. Fenn, H. Memarian, R. Ringer, Proceedings of 41st Annual Technical Conference, Boston, SVC, 452 (1998).
    [12] D.R. Cairns, R.P. Witte, D.K. Sparacin, S.M. Sachsman, D.C. Paine, G.P. Crawford, R. Newton, Appl. Phys. Lett. 76, 1425 (2000).
    [13] C.H. Seager, D.C. McIntyre, W.L. Warren, B.A. Tuttle, Appl. Phys. Lett. 68, 2660 (1996).
    [14] M.W.J. Prince, K.O. Gross-Holtz, G. Muller, J.B. Cillessen, J.B. Giesbers, R.P. Weening, R.M. Wolf, Appl. Phys. Lett. 68, 3650 (1996).
    [15] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, Nature 389, 939 (1997).
    [16] G. Thomas, Nature 389, 907 (1997).
    [17] H. Sato, T. Minami, S. Takata, T. Yamada, Thin Solid Films 236, 27 (1993).
    [18] A.N. Banerjee, K.K. Chattopadhyay, Progress in Crystal Growth and Charaterization of Materials 50, 52 (2005).
    [19] H. Kawazoe, H. Yanagi, K. Ueda, H. Hosono, MRS Bull. 28 (August 2000).
    [20] D. DeVault, J. Chem. Educ. 21, 526 (1944).
    [21] J.C. Bailar Jr., H.J. Emele´us, Sir N. Ronald, A.F. Trotman-Dickenson (Eds.), Comprehensive Inorganic Chemistry, Pergamon, New York, NY, 1973.
    [22] Y.K. Leung, A.K. Khan, J.F. Kos, F.P. Koffyberg, Proceedings of National Conference on Solar Energy, Montreal, Solar Energy Society of Canada, 124 (1981).
    [23] J.P. Dahl, A.C. Switendick, J. Phys. Chem. Solids 27, 931 (1966).
    [24] M. Hayashi, K. Katsuki, J. Phys. Soc. Jpn. 5, 380 (1950).
    [25] L. Kleinman, K. Mednick, Phys. Rev. B 21, 1549 (1980).
    [26] R.D. Shannon, D.B. Rogers, C.T. Prewitt, Inorg. Chem. 10, 713 (1971).
    [27] C.T. Prewitt, R.D. Shannon, D.B. Rogers, Inorg. Chem. 10, 719 (1971).
    [28] D.B. Rogers, R.D. Shannon, C.T. Prewitt, J.L. Gilson, Inorg. Chem. 10, 723 (1971).
    [29] H. Hiramatsu, K. Ueda, H. Ohta, M. Orita, M. Hirano, H. Hosono, Appl. Phys. Lett. 81, 598 (2002).
    [30] F.A. Benko, F.P. Koffyberg, J. Phys. Chem. Solids 45, 57 (1984).
    [31] H. Yanagi, S. Inoue, K. Ueda, H. Kawazoe, H. Hosono, N. Hamada, J. Appl. Phys. 88, 4159 (2000).
    [32] J. Robertson, P.W. Peacock, M.D. Towler, R. Needs, Thin Solid Films 411, 96 (2002).
    [33] B.J. Ingram, T.O. Mason, R. Asahi, K.T. Park, A.J. Freeman, Phys. Rev. B 64, 155114 (2001).
    [34] J. Tate, M.K. Jayaraj, A.D. Draeseke, T. Ulbrich, A.W. Sleight, K.A. Vanaja, R. Nagarajan, J.F. Wager, R.L. Hoffman, Thin Solid Films 411, 119 (2002).
    [35] H. Yanagi, T. Hase, S. Ibuki, K. Ueda, H. Hosono, Appl. Phys. Lett. 78, 1583 (2001).
    [36] H. Yanagi, K. Ueda, H. Ohta, M. Orita, M. Hirano, H. Hosono, Solid State Commun. 121, 15 (2001).
    [37] N. Duan, A.W. Sleight, M.K. Jayaraj, J. Tate, Appl. Phys. Lett. 77, 1325 (2000).
    [38] R. Nagarajan, A.D. Draeseke, A.W. Sleight, J. Tate, J. Appl. Phys. 89, 8022 (2001).
    [39] M.K. Jayaraj, A.D. Draeseke, J. Tate, A.W. Sleight, Thin Solid Films 397, 244 (2001).
    [40] R. Nagarajan, N. Duan, M.K. Jayaraj, J. Li, K.A. Vanaja, A. Yokochi, A. Draeseke, J. Tate, A.W. Sleight, Int. J. Inorg. Mater. 3, 265 (2001).
    [41] R.J. Cava, W.F. Peck Jr., J.J. Krajewski, S.W. Cheong, H.Y. Hwang, J. Mater. Res. 9, 314 (1994).
    [42] R.J. Cava, H.W. Zandbergen, A.P. Ramirez, H. Tagaki, C.T. Chien, J.J. Krajewski, W.F. Peck Jr., J.V. Waszczak, G. Meigs, R.S. Roth, L.F. Schneemeyer, J. Solid State Chem. 104, 437 (1993).
    [43] M.K. Jayaraj, A. Draeseke, J. Tate, N. Duan, A.W. Sleight, Proceedings of the MRS Workshop on Transparent Conductive Oxide, Denever, CO, 2000.
    [44] A.N. Banerjee, C.K. Ghosh, K.K. Chattopadhyay, Sol. Energy Mater. Sol. Cells 89, 75 (2005).
    [45] K. Tonooka, K. Shimokawa, O. Nishimura, Thin Solid Films 411, 129 (2002).
    [46] C.H. Ong, H. Gong, Thin Solid Films 445, 299 (2003).
    [47] M.V. Lalic´, J.M. Filho, A.W. Carbonari, R.N. Saxena, M. Moralles, J. Phys.: Condens. Matter 14, 5517 (2002).
    [48] M.V. Lalic´, J.M. Filho, A.W. Carbonari, R.N. Saxena, Solid State Commun. 125, 175 (2003).
    [49] D.Y. Shahriari, A. Barnabe`, T.O. Mason, K.R. Poeppelmeier, Inorg. Chem. 40, 5734 (2001).
    [50] P. Lunkenheimer, A. Loidl, C.R. Ottermann, K. Bange, Phys. Rev. B 44, 5927 (1991).
    [51] G.A. Slack, J. Appl. Phys. 31, 1571 (1960).
    [52] M.R. Norman, Phys. Rev. Lett. 64, 1162 (1990).
    [53] K.L. Chopra, S. Major, D.K. Pandya, Thin Solid Films 102, 1 (1983).
    [54] H.L. Hartnagel, A.L. Dawar, A.K. Jain, C. Jagadish, Semiconducting Transparent Thin Films, IOP Publishing Ltd., Bristol and Philadelphia, 1995.
    [55] D.G. Thomas, J. Phys. Chem. Solids 9, 31 (1959).
    [56] J.J. Lander, J. Phys. Chem. Solids 15, 324 (1960).
    [57] K. Hu¨mmer, Phys. Status Solidi B 56, 249 (1973).
    [58] T. Yamamoto, H.K. Yoshida, Jpn. J. Appl. Phys. 38, L166 (1999).
    [59] M. Joseph, H. Tabata, T. Kawai, Jpn. J. Appl. Phys. 38, L2505 (1999).

    第三章
    [1] G.K. Wehner et al.﹐Handbook of Thin Film Technology, McGraw-Hill﹐New York﹐1970
    [2] Soshin Chikazumi and Stanley H. Charap, Physics of Magnetism, (1972)
    [3] D.C. Koningsberger and R. Prins, X-ray Absorption principles, applications, techniques of EXAFS, SEXAFS and XANES (1988), 574
    [4] J.J. Rehr et al., Rev. Mod. Phys., 72 (2000), 621
    [5] 半導體元件物理與製作技術(第二版),施敏、黃調元 (2006), p.96-98

    第四章
    [1] J. Pellicer-Porres, A. Segura, Ch. Ferrer-Roca, D. Martı´nez-Garcı´a, J.A. Sans, and E. Martı´nez, Phys. Rev. B 69, 024109 (2004).
    [2] D.Y. Shahriari, A. Barnabe`, T.O. Mason, K.R. Poeppelmeier, Inorg. Chem. 40, 5734 (2001).

    附錄一
    [1] S. K. MISRA and A. C. D. CHAKLADER, Journal of The American Ceramic Society - Discussions and Notes, 509 (1963).

    下載圖示 校內:2010-07-27公開
    校外:2010-07-27公開
    QR CODE