| 研究生: |
陳佳君 Chen, Chia-Chun |
|---|---|
| 論文名稱: |
二甲基甲醯胺暴露引起之粒線體膜電位變化與去氧核醣核酸損害 Membrane Potential Alteration and DNA Damage in Mitochondria Resulting from N,N-dimethylformamide Exposure |
| 指導教授: |
張火炎
Chang, Ho-Yuan 謝達斌 Shieh, Dar-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 粒線體DNA 4 、二甲基甲醯胺 、粒線體膜電位 、粒線體DNA copy number 、977-bp斷損突變 、血液 、精液 |
| 外文關鍵詞: | 977-bp deletion, N, N-dimethylformamide, mitochondrial DNA copy number, mitochondrial DNA 4, mitochondrial membrane potential, blood, sperm |
| 相關次數: | 點閱:219 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二甲基甲醯胺(N,N-dimethylformamide, DMF)為一種水溶性與脂溶性良好的有機溶劑,廣泛用於各種工業製程。DMF於體內會代謝形成N-methylformamide(NMF)及N-acetyl-S-(N-methylcarbamoryl)cysteine(AMCC)於尿中排出;過去文獻指出此為造成DMF健康效應之肝毒性與男性生殖傷害主要來源,其中又以AMCC為長期暴露之毒性指標。近來研究指出肝毒性與男性生殖傷害可能與粒線體膜電位(m)、粒線體DNA(mitochondrial DNA, mtDNA)功能缺陷相關,如mtDNA 4,977-bp斷損突變(mtDNA4977)及mtDNA copy number,然而至今未有DMF造成m或mtDNA損害之相關研究。本研究目的為(1)受DMF暴露後,m、mtDNA4977及mtDNA copy number之變化情形;(2)評估不同DMF暴露劑量與m、∆mtDNA4977及mtDNA copy number變化的劑量反應關係;(3)比較及探討不同生物樣本分析結果之意義與差異。本研究首先選取13名職業暴露DMF男性勞工與13名年齡、工作年資配對之對照組,進行血液樣本∆mtDNA4977及mtDNA copy number分析。研究結果顯示DMF暴露組之相對ΔmtDNA4977量較對照組顯著為高(p<0.001);若進一步依暴露程度(高於DMF法規容許濃度10 ppm與低於10 ppm)做分組比較,發現差異亦達顯著(p=0.014)。在尿中生物指標AMCC高濃度組(> 40 mg/L)之相對ΔmtDNA4977量較低濃度組(≤ 40 mg/L)顯著為高(p=0.042);而另一生物指標NMF則無統計上顯著差異。在mtDNA copy number方面,其變化趨勢與ΔmtDNA4977相似,但只有尿中NMF達顯著差異(p=0.011)。本研究另外選取9名職業暴露DMF之男性勞工與9名年齡配對之對照組,進行其精液樣本之m、∆mtDNA4977及mtDNA copy number變化情形分析。研究結果顯示,DMF暴露組之m正常比例顯著低於對照組(p<0.001);經暴露程度做分組比較後,DMF高濃度分組亦顯著低於對照組(p=0.009),但NMF高濃度組僅與低濃度組達邊際顯著差異(p=0.068)。而在∆mtDNA4977及mtDNA copy number分析方面,研究結果與血液樣本之變化趨勢相同,但唯有DMF暴露組與對照組間之mtDNA copy number及DMF高濃度組與低濃度組間之∆mtDNA4977達顯著差異(p=0.004及p=0.026),而DMF暴露組與對照組間之∆mtDNA4977則僅達邊際顯著差異(p=0.070)。因此,本研究結論為長期DMF職業暴露可能會造成勞工精子細胞∆Ψm下降,同時亦會引起精液與血液樣本之mtDNA copy number變化及增加∆mtDNA4977發生的比率。建議未來研究應納入更多有效樣本數,以做更深入之探討。
N,N-dimethylformamide (DMF) has been widely used in industries because of its extensive miscibility with water and solvents. Its health effects include hepatotoxicity and male reproductoxicity, possibly linked with mitochondrial membrane potential (∆Ψm), mitochondrial DNA 4,977-bp deletion (ΔmtDNA4977) and mitochondrial DNA (mtDNA) copy number. The relationship between DMF exposure and ∆Ψm or mtDNA alterations, however, has not been postulated yet. The purpose of this study was to investigate the association of ∆Ψm, ΔmtDNA4977 and mtDNA copy number with DMF exposure and to explore the association of the DMF-derived ∆Ψm and mtDNA alterations with exposure to the airborne DMF and two urinary DMF biomarkers of N-methylformamide (NMF) and N-acetyl-S-(N-methylcarbamoryl) cysteine (AMCC). Firstly, 13 DMF-exposed workers and 13 age-seniority-matched control workers (all male) in a synthetic leather factory were recruited. The analyses of ΔmtDNA4977 and mtDNA copy number in blood cells were achieved on each participant. We found the frequencies of relative ΔmtDNA4977 in DMF-exposed group were significantly higher than those in the control group (p<0.001). Moreover, elevation in the proportion of ΔmtDNA4977 of individuals with exposure exceeding the permissible exposure limit (PEL) of A-DMF and the biological exposure index (BEI) of urinary AMCC (U-AMCC) levels was significantly higher than those not (p=0.014 and p=0.042, respectively). No significant findings were observed, however, for the urinary NMF (U-NMF). In the comparisons on relative mtDNA copy number frequency, on the other hand, only U-NMF showed the significantly difference between those exceeding and not exceeding (p=0.011), but not in the comparisons with A-DMF and U-AMCC. Secondly, for the semen samples, 9 DMF-exposed male workers and 9 age-matched controls were selected to analyze the ∆Ψm, ΔmtDNA4977 and mtDNA copy number. We found the percentage of ∆Ψm normality in DMF-exposed group was significantly lower than that in control group (p<0.001). Moreover, the elevation in the percentage of ∆Ψm normality of individuals with exposure exceeding the PEL of A-DMF was also significantly lower than that not (p=0.009). In the analyses of ΔmtDNA4977 and mtDNA copy number for the sperm, the alteration trends were the same as for the blood cells. Thus, we concluded that long-term exposure to DMF might cause the alteration of ∆Ψm in semen samples and the alterations of mtDNA in semen and blood samples, and a further study with more subjects involved is warranted.
American Conference of Governmental Industrial Hygienists. 2005. Threshold limit values for chemical substances and physical agents, and biological exposure indices., ACGIH, Cincinnati, Ohio, USA.
Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, and Eperon IC. 1981. Sequence and organization of the human mitochondrial genome. Nature. 290: 457-65
Barrientos A, Casademont J, Cardellach F, Estivill X, Urbano-Marquez A, and Nunes V. 1997. Reduced steady-state levels of mitochondrial RNA and increased mitochondrial DNA amount in human brain with aging. Brain Res Mol Brain Res. 52(2): 284-9.
Brown MD, Allen JC, Van Stavern GP, Newman NJ, and Wallace DC. 2001. Clinical, genetic, and biochemical characterization of a Leber hereditary optic neuropathy family containing both the 11778 and 14484 primary mutations. Am J Med Genet. 104(4): 331-8.
Byczkowski JZ, and Sorenson JR. 1984. Effects of metal compounds on mitochondrial function: a review. Sci Total Environ. 37(2-3): 133-62.
Calvert GM, Fajen JM, Hills BW, and Halperin WE. 1990. Testicular cancer, dimethylformamide, and leather tanneries. Lancet 336, 1253-4.
Canova S, Degan P, Peters LD, Livingstone DR, Voltan R, and Venier P. 1998 Tissue dose, DNA adducts, oxidative DNA damage and CYP1A-immunopositive proteins in mussels exposed to waterborne benzo[a]pyrene. Mutat Res. 399(1): 17-30.
Chang HY, Shih TS, Guo YL, Tsai CY, and Hsu PC. 2004. Sperm function in workers exposed to N,N-dimethylformamide in the synthetic leather industry. Fertil Steril. 81(6): 1589-94.
Chang HY, Tsai CY, Lin YQ, Shih TS, and Lin WC. 2005. Total body burden arising from a week's repeated dermal exposure to N,N-dimethylformamide. Occup Environ Med 62, 151-6.
Chieli E, Saviozzi M, Menicagli S, Branca T, and Gervasi PG. 1995. Hepatotoxicity and P-4502E1-dependent metabolic oxidation of N,N-dimethylformamide in rats and mice. Arch Toxicol. 69(3): 165-70.
Dan Z, Popov Y, Patsenker E, Preimel D, Liu C, Wang XD, Seitz HK, Schuppan D, and Stickel F. 2005. Hepatotoxicity of alcohol-induced polar retinol metabolites involves apoptosis via loss of mitochondrial membrane potential. FASEB J. 19(7): 845-7.
Ducatman AM, Conwill DE, and Crawl J. 1986. Germ cell tumors of the testicle among aircraft repairmen. J Urol. 136(4): 834-6.
Donnelly ET, McClure N, and Lewis SE. 1999. The effect of ascorbate and alpha-tocopherol supplementation in vitro on DNA integrity and hydrogen peroxide-induced DNA damage in human spermatozoa. Mutagenesis. 14(5): 505-12.
EPA. 2004. N,N-Dimethylformamide. US EPA - Air Toxics Website (http://www.epa.gov/ttn/atw/hlthef/di-forma.html), US Environmental Protection Agency.
Fiorito A, Larese F, Molinari S, and Zanin T. 1997. Liver function alterations in synthetic leather workers exposed to dimethylformamide. Am J Ind Med. 32(3): 255-60.
Fischel-Ghodsian N, Bohlman MC, Prezant TR, Graham JM Jr, Cederbaum SD, and Edwards MJ. 1992. Deletion in blood mitochondrial DNA in Kearns-Sayre syndrome. Pediatr Res. 31(6): 557-60.
Gadaleta MN, Rainaldi G, Lezza AM, Milella F, Fracasso F, and Cantatore P. 1992. Mitochondrial DNA copy number and mitochondrial DNA deletion in adult and senescent rats. Mutat Res. 275(3-6): 181-93.
Gescher A. 1993. Metabolism of N,N-dimethylformamide: key to the understanding of its toxicity. Chem Res Toxicol 6, 245-51.
Goto Y, Tsugane K, Tanabe Y, Nonaka I, and Horai S. 1994. A new point mutation at nucleotide pair 3291 of the mitochondrial tRNA(Leu(UUR)) gene in a patient with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Biochem Biophys Res Commun. 202(3): 1624-30.
Gravance CG, Garner DL, Miller MG, and Berger T. 2003. Flow cytometric assessment of changes in rat sperm mitochondrial function after treatment with pentachlorophenol. Toxicol In Vitro. 17(3): 253-7.
Green DR, and Reed JC. 1998. Mitochondria and apoptosis. Science. 281(5381): 1309-12.
Hanasono GK, Fuller RW, Broddle WD, and Gibson WR. 1977. Studies on the effects on N,N'-dimethylformamide on ethanol disposition and on monoamine oxidase activity in rats. Toxicol Appl Pharm. 39(3): 461-72.
Harding AE. 1991. Neurological disease and mitochondrial genes. Trends Neurosci. 14(4): 132-8.
Hansen, E, and Meyer, O. 1990. Embryotoxicity and teratogenicity study in rats dosed epicutaneously with dimethylformamide (DMF). J Appl Toxicol, 10: 333-8.
Iwaasa M, Umeda S, Ohsato T, Takamatsu C, Fukuoh A, Iwasaki H, Shinagawa H, Hamasaki N, and Kang D. 2002. 1-Methyl-4-phenylpyridinium ion, a toxin that can cause parkinsonism, alters branched structures of DNA. J Neurochem. 82(1): 30-7.
Johnson W, and Yagi K. 2002. CEH Report: Dimethylformamide. Menlo Park, CA, SRI Consulting.
Jones R, Mann T, and Sherins R. 1979. Peroxidative breakdown of phospholipids in human spermatozoa, spermicidal properties of fatty acid peroxides, and protective action of seminal plasma. Fertil Steril. 31(5): 531-7.
Kang JS, Wanibuchi H, Morimura K, Puatanachokchai R, Salim EI, Hagihara A, Seki S, and Fukushima S. 2005. Enhancement by estradiol 3-benzoate in thioacetamide- induced liver cirrhosis of rats. Toxicol Sci. [Epub ahead of print]
Kao SH, Chao HT, and Wei YH. 1995. Mitochondrial deoxyribonucleic acid 4977-bp deletion is associated with diminished fertility and motility of human sperm. Biol Reprod. 52(4): 729-36.
Kao SH, Chao HT, and Wei YH. 1998. Multiple deletions of mitochondrial DNA are associated with the decline of motility and fertility of human spermatozoa. Mol Hum Reprod. 4(7): 657-66.
Kao SH, Chao HT, Liu HW, Liao TL, and Wei YH. 2004. Sperm mitochondrial DNA depletion in men with asthenospermia. Fertil Steril. 82(1): 66-73.
Kestell P, Threadgill MD, Gescher A, Gledhill AP, Shaw AJ, and Farmer PB. 1987. An investigation of the relationship between the hepatotoxicity and the metabolism of N-alkylformamides. J Pharmacol Exp Ther. 240(1): 265-70.
Knight-Lozano CA, Young CG, Burow DL, Hu ZY, Uyeminami D, Pinkerton KE, Ischiropoulos H, and Ballinger SW. 2002. Cigarette smoke exposure and hypercholesterolemia increase mitochondrial damage in cardiovascular tissues. Circulation. 105(7): 849-54.
Lee HC, Pang CY, Hsu HS, and Wei YH. 1994. Differential accumulations of 4,977 bp deletion in mitochondrial DNA of various tissues in human ageing. Biochim Biophys Acta. 1226: 37-43.
Lee HC, Lu CY, Fahn HJ, and Wei YH. 1998. Aging- and smoking-associated alteration in the relative content of mitochondrial DNA in human lung. FEBS Lett. 441(2): 292-6.
Lee HC, Yin PH, Lu CY, Chi CW, and Wei YH. 2000. Increase of mitochondria and mitochondrial DNA in response to oxidative stress in human cells. Biochem J. 348 Pt 2: 425-32.
Lee HC, Yin PH, Yu TN, Chang YD, Hsu WC, Kao SY, Chi CW, Liu TY, and Wei YH. 2001. Accumulation of mitochondrial DNA deletions in human oral tissues -- effects of betel quid chewing and oral cancer. Mutat Res. 493(1-2): 67-74.
Levin SM, Baker DB, Landrigan PJ, Monaghan SV, Frumin E, Braithwaite M, and Towne W. 1987. Testicular cancer in leather tanners exposed to dimethylformamide. Lancet. 2(8568): 1153.
Lyle WH, Spence TW, McKinneley WM, and Duckers K. 1979. Dimethylformamide and alcohol intolerance. Br J Ind Med 36, 63-6.
Mansouri A, Fromenty B, Berson A, Robin MA, Grimbert S, Beaugrand M, Erlinger S, and Pessayre D. 1997. Multiple hepatic mitochondrial DNA deletions suggest premature oxidative aging in alcoholic patients. J Hepatol. 27(1): 96-102.
Masayesva BG, Mambo E, Taylor RJ, Goloubeva OG, Zhou S, Cohen Y, Minhas K, Koch W, Sciubba J, Alberg AJ, Sidransky D, and Califano J. 2006. Mitochondrial DNA content increase in response to cigarette smoking. Cancer Epidemiol Biomarkers Prev. 15(1): 19-24.
Marchetti C, Jouy N, Leroy-Martin B, Defossez A, Formstecher P, and Marchetti P. 2004. Comparison of four fluorochromes for the detection of the inner mitochondrial membrane potential in human spermatozoa and their correlation with sperm motility. Hum Reprod. 19(10): 2267-76.
May-Panloup P, Chretien MF, Savagner F, Vasseur C, Jean M, Malthiery Y, and Reynier P. 2003. Increased sperm mitochondrial DNA content in male infertility. Hum Reprod 18, 550-6.
Mohamed SA, Wesch D, Blumenthal A, Bruse P, Windler K, Ernst M, Kabelitz D, Oehmichen M, and Meissner C. 2004. Detection of the 4977 bp deletion of mitochondrial DNA in different human blood cells. Exp Gerontol. 39(2): 181-8.
Moorman WJ, Ahlers HW, Chapin RE, Daston GP, Foster PM, Kavlock RJ, Morawetz JS, Schnorr TM, and Schrader SM. 2000. Prioritization of NTP reproductive toxicants for field studies. Reprod Toxicol. 14(4): 293-301.
Morgan-Hughes JA, Cooper JM, Holt IJ, Harding AE, Schapira AH, and Clark JB. 1990. Mitochondrial myopathies: clinical defects. Biochem Soc Trans. 18(4): 523-6.
Mráz J, Jheeta P, Gescher A, Hyland R, Thummel K, and Threadgill MD. 1993. Investigation of the mechanistic basis of N,N-dimethylformamide toxicity. Metabolism of N,N-dimethylformamide and its deuterated isotopomers by cytochrome P450 2E1. Chem Res Toxicol. 6(2): 197-207.
Mráz J, Simek P, Chvalova D, Nohova H, Smigolova P. 2004. Studies on the methyl isocyanate adducts with globin. Chem Biol Interact. 148(1-2):1-10..
Nomoto S, Yamashita K, Koshikawa K, Nakao A, and Sidransky D. 2002. Mitochondrial D-loop mutations as clonal markers in multicentric hepatocellular carcinoma and plasma. Clin Cancer Res. 8(2): 481-7.
Pascual ML, Cebrian-Perez JA, Lopez-Perez MJ, and Muino-Blanco T. 1996. Short-term inhibition of the energy metabolism affects motility but not surface properties of sperm cells. Biosci Rep. 16(1): 35-40.
Pearson PG, Slatter JG, Rashed MS, Han DH, and Baillie TA. 1991. Carbamoylation of peptides and proteins in vitro by S-(N-methylcarbamoyl)glutathione and S-(N-methylcarbamoyl)cysteine, two electrophilic S-linked conjugates of methyl isocyanate. Chem Res Toxicol. 4(4): 436-44.
Perbellini L, Maestri L, Veronese N, Romani S, and Brugnone F. 2001. Analysis of urinary N-acetyl-S-(N-methylcarbamoyl)cysteine, the mercapturic acid derived from N,N-dimethylformamide. J Chromatogr B Biomed Sci Appl. 759(2): 349-54.
Pesce V, Cormio A, Fracasso F, Vecchiet J, Felzani G, Lezza AM, Cantatore P, and Gadaleta MN. 2001. Age-related mitochondrial genotypic and phenotypic alterations in human skeletal muscle. Free Radic Biol Med. 30(11): 1223-33.
Scailteur V, and Lauwerys R. 1984. In vivo and in vitro oxidative biotransformation of dimethylformamide in rat. Chem Biol Interact. 50(3): 327-37.
Scailteur V, and Lauwerys RR 1987. Dimethylformamide (DMF) hepatotoxicity. Toxicology 43, 231-8.
Slatter JG, Rashed MS, Pearson PG, Han DH, and Baillie TA. 1991. Biotransformation of methyl isocyanate in the rat. Evidence for glutathione conjugation as a major pathway of metabolism and implications for isocyanate-mediated toxicities. Chem Res Toxicol 4, 157-61.
Sharma RK, and Agarwal A. 1996. Role of reactive oxygen species in male infertility. Urology. 48(6): 835-50.
Shieh DB, Chou WP, Wei YH, Wong TY, and Jin YT. 2004. Mitochondrial DNA 4,977-bp deletion in paired oral cancer and precancerous lesions revealed by laser microdissection and real-time quantitative PCR. Ann N Y Acad Sci. 1011: 154-67.
Tolando R, Zanovello A, Ferrara R, Iley JN, and Manno M. 2001. Inactivation of rat liver cytochrome P450 (P450) by N,N-dimethylformamide and N,N-dimethylacetamide. Toxicol Lett. 124(1-3): 101-11.
Tsujimoto Y, and Shimizu S. 2000. VDAC regulation by the Bcl-2 family of proteins. Cell Death Differ. 7(12): 1174-81.
Reddy PH, and Beal MF. 2005. Are mitochondria critical in the pathogenesis of Alzheimer's disease? Brain Res Brain Res Rev. 49(3): 618-32.
Rosenberg J, Fiserova-Bergerova V, and Lowry LK. 1995. Measurements in urine. In: Biological Exposure Indices Committee, eds. Topics in biological monitoring Cincinnati, OH: American Conference of Governmental Industrial Hygienists.
Ruiz-Pesini E, Diez C, Lapena AC, Perez-Martos A, Montoya J, Alvarez E, Arenas J, and Lopez-Perez MJ. 1998. Correlation of sperm motility with mitochondrial enzymatic activities. Clin Chem. 44(8 Pt 1): 1616-20.
Umeda S, Muta T, Ohsato T, Takamatsu C, Hamasaki N, and Kang D. 2000. The D-loop structure of human mtDNA is destabilized directly by 1-methyl-4-phenylpyridinium ion (MPP+), a parkinsonism-causing toxin. Eur J Biochem. 267(1): 200-6.
Wallace DC. 1992. Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science. 256(5057): 628-32.
Walter D, Jochim C, and Knecht U. 2000. Toxicolkinetic study on N,N-dimethylformamide for re-evaluation of Biological Tolerance value in Germany. In: Hallier E. Documentation from the 38th annual conference of German Society of Occupational and Environmental Medicine, Wiesbaden, Germany, Rindt-Druck Fulda. 619-20
Wang X, Sharma RK, Gupta A, George V, Thomas AJ, Falcone T, and Agarwal A. 2003. Alterations in mitochondria membrane potential and oxidative stress in infertile men: a prospective observational study. Fertil Steril. Suppl 2: 844-50.
Wei YH and Lee HC. 2002. Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp Biol Med (Maywood). 227(9): 671-82.
Wuthier RE. 1982. A review of the primary mechanism of endochondral calcification with special emphasis on the role of cells, mitochondria and matrix vesicles. Clin Orthop. (169): 219-42.
Xia T, Korge P, Weiss JN, Li N, Venkatesen MI, Sioutas C, and Nel A. 2004. Quinones and aromatic chemical compounds in particulate matter induce mitochondrial dysfunction: implications for ultrafine particle toxicity. Environ Health Perspect. 112(14): 1347-58.
周文彬. 2003. 利用即時定量PCR與雷射顯微切割技術分析口腔癌及癌前期組織中粒線體DNA 4977bp斷裂之研究. 國立成功大學 分子醫學研究所 碩士論文
黃建達. 2003. 鉛暴露影響精子各類反應性氧化物值產生、粒線體膜電位與細胞凋亡之研究. 國立高雄第一科技大學 環境與安全衛生工程所 碩士論文
賴泓霖. 2004. 口腔癌及癌前病灶組織與細胞株隻粒線體D-loop區段序列及其基因體數量分析. 國立成功大學 口腔醫學研究所 碩士論文
雲遠德. 2004. 二甲基甲醯胺、丁酮暨甲苯混合暴露之職業環境對生物偵測之影響. 國立成功大學 環境醫學研究所 碩士論文
倪啟軒. 2005應用唾液生物指標評估職業暴露二甲基甲醯胺之生物偵測與動力學特性. 國立成功大學 環境醫學研究所 碩士論文