| 研究生: |
洪青元 Hung, Ching-Yuan |
|---|---|
| 論文名稱: |
應用奈米粒子標記與銀析出偵測法於微免疫分析之研究 Silver-precipitation Immunoassay Using Nanoparticles as a Label |
| 指導教授: |
林裕城
Lin, Yu-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 生物晶片 、微機電 、酵素免疫分析 、銀析出現象 、奈米粒子 |
| 外文關鍵詞: | biochip, MEMS, immunoassay, silver precipitation, nanoparticle |
| 相關次數: | 點閱:145 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之概念設計與實驗執行在於結合奈米粒子及微晶片技術,以建立新型之免疫分析系統。在此研究中,我們利用奈米粒子標記技術並配合銀析出反應,提供另一種有效且方便的免疫分析檢測方式。此外,在微晶片上執行免疫分析程序具有改良多樣性、低樣本用量與高靈敏度等特性,且可以縮短偵測反應的時間。
有別於傳統酵素標記的免疫分析(enzyme-linked immunosorbent assay, ELISA),我們採用現行傳統抗原抗體在晶片表面之固定化技術,並加入銀析出增強溶液,以增強金奈米粒子產生的反應偵測訊號。本研究利用protein A與免疫球蛋白G (IgG) 作為免疫分析模型,以探討新型免疫分析之檢驗可行性與效能。此外,實驗的規劃與架構將朝兩個方向來探討:(一)兩層分析模式,直接檢驗固定在基材上的抗原,並調整實驗偵測的最佳條件;(二)三明治分析模式,利用兩層抗體包夾方式以對抗原作定性與定量之分析。
研究結果顯示,本研究策略可以完成免疫分析的步驟與目標,且使用的兩種偵測方式也可配合銀析出現象訊號產生可供檢測之訊號。基於結合微晶片、奈米應用技術、化學反應訊號增強技術,與提供光學與電性偵測成果,本研究建立全新、快速、靈敏之免疫分析系統。相信本研究之高應用性、高生化反應效能及高靈敏度,將對免疫分析系統提供嶄新的思維,和立下新的里程碑。
The design and experiment of this research lie in combining the microchip and nanoparticles to set up a new silver-precipitation immunoassay system. In this study, gold nanoparticle-labeled antibody is coupled with silver enhancement method to provide an alternative of effective and convenient immunoassay. In addition, the immunoassay carried out on the microchip has the advantages of versatile applications, lower sample consumption, shorter detection time and high sensitivity.
Compared with traditional enzyme-linked immunosorbent assay (ELISA), we adopt the immobilization of antigen or antibody on the chip surface, and introduce silver enhancement method to magnify the detection signal generated by the gold nanoparticle. Protein A and immunoglobulin G (IgG) are selected as the model immunoassay to estimate the feasibility and efficiency of the silver-precipitation immunoassay. There are two major formats developed in this study: 1. direct immunoassay (two-layer format), the antigen is immobilized on the chip directly to optimize the assay conditions; 2. sandwich immunoassay (sandwich format), primary and secondary antibodies are used to quantify and qualify antigens.
The results show that the silver-precipitation immunoassay can be measured with optical scanning and electro-signal detection methods. The relationship between concentration and signal is established and the antigen detection limit is 1 ng/mL. The high applicability and biochemical efficiency of this study can provide an alternative for rapid, sensitive and convenient immunoassay.
[1] D.R. Thevenot, K. Toth, R.A. Durst, G.S. Wilson, “Electrochemical Biosensors: Recommended Definitions and Classification,” Pure and Applied Chemistry, 71, pp. 2333-2348, 1999.
[2] A.G. Richard, J.K. Thomas, A.O. Barbara, Kuby immunology, W.H. freeman and company, New York, 2002.
[3] J.P. Gosling, “A decade of development in immunoassay methodology,” Clinical Chemistry, 36, pp. 1408-1427, 1990.
[4] M.A. Hayat (Ed.), Colloidal Gold: Principles, Methods, and Applications, vol. 1, pp. 252-316, Academic Press, New York, 1989.
[5] M.L. Peter, “Immunogold Silver Staining for Light Microscopy,” Histochemistry & Cell Biology, 106, pp. 9-17, 1996.
[6] C.S. Holgate, P. Jackson, P.N. Cowen, C.C. Bird, “Immunogold-silver staining: New Method of Immunostaining with Enhanced Sensitivity,” Journal of Histochemistry & Cytochemistry, 31, pp. 938-944, 1983.
[7] L. Scopsi, L.I. Larsson, “Increased Sensitivity in Immunocytochemistry. Effects of Double Application of Antibodies and of Silver Intensification on Immunogold and Peroxidase-antiperoxidase Staining Techniques,” Histochemistry, 82, pp. 321-329, 1985.
[8] D.R. Springall, G. W. Hacker, L. Grimelius, J. M. Polak, “The Potential of the Immunogold-silver Staining Method for Paraffin Sections,” Histochemistry and Cell Biology, 81, pp. 603-608, 1984.
[9] P. Jackson, J. Teasdale, P.N. Cowen, “Development and validation of a sensitive immunohistochemical oestrogen receptor assay for use on archival breast cancer tissue,” Histochemistry and Cell Biology, 92, pp. 149-152, 1989.
[10] R. Xu, Q. Gao, S. Wang, “Investigation of Retroviral Infection in Human Acute Myeloid Leukemia,” Zhonghua Yi Xue Za Zhi, 78, pp. 504-507, 1998.
[11] K. Nielsen, M. Lin, D. Gall, M. Jolley, “Fluorescence Polarization Immunoassay: Detection of Antibody to Brucella Abortus,” Methods, 22, pp. 71-76, 2000.
[12] J. Yakovleva, R. Davidsson, A. Lobanova, M. Bengtsson, S. Eremin, T. Laurell, J. Emne´us, “Microfluidic Enzyme Immunoassay Using Silicon Microchip with Immobilized Antibodies and Chemiluminescence Detection,” Analytical Chemistry, 74, pp. 2994-3004, 2002.
[13] M. Dequaire, C. Degrand, B. Limoges, “An Electrochemical Metalloimmunoassay Based on a Colloidal Gold Label,” Analytical Chemistry, 72, pp. 5521-5528, 2000.
[14] N. Kangatharalingam, M. Essenberg, “Modified Pyrogallol-initiated Immunogold–silver Enhancement Technique Applicable to Prokaryotes,” Journal of Microbiological Methods, 41, pp. 211-217, 2000.
[15] J.S. Ko, H.C. Yoon, H. Yang, H.B. Pyo, K.H. Chung, S.J. Kim, Y.T. Kim, “Polymer-based Microfluidic Device for Immunosensing Biochips,” Lab Chip, 3, pp. 106-113, 2003.
[16] B.H. Schneider, E.L. Dickinson, M.D. Vach, J.V. Hoijer, L.V. Howard, “Optical Chip Immunoassay for hCG in Human Whole Blood,” Biosensors & Bioelectronics, 15, pp. 597-604, 2000.
[17] N. Lochner, C. Lobmaier, M. Wirth, A. Leitner, F. Pittner, F. Gabor, “Silver Nanoparticle Enhanced Immunoassays: One Step Real Time Kinetic Assay for Insulin in Serum,” European Journal of Pharmaceutics and Biopharmaceutics, 56, pp. 469-477, 2003.
[18] E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, J. R. Lakowicz, “Metal-enhanced Fluorescence Immunoassays Using Total Internal Reflection and Silver Island-coated Surfaces,” Analytical Biochemistry, 34, pp. 303-311, 2004.
[19] T. A. Taton, C. A. Mirkin, R. L. Letsinger, “Scanometric DNA Array Detection with Nanoparticle Probes,” Science, 289. pp. 1757-1760, 2000.
[20] S.J. Park, T.A. Taton, C.A. Mirkin, “Array-Based Electrical Detection of DNA with Nanoparticle Probes,” Science, 295, pp. 1503-1506, 2002.
[21] T.C. Charles, “The Active Site in Nanoparticle Gold Catalysis,” Science, 306, pp. 234-235, 2004.
[22] M.A. Hyatt (Ed.), Colloidal Gold: Principles, Methods and Applications, vol. 3, Academic Press, New York, 1989.
[23] K.C. Ho, P.J. Tsai, Y.S. Lin, Y.C. Chen, “Using Biofunctionalized Nanoparticles to Probe,” Analytical Chemistry, 76, pp. 7162-7168, 2004.
[24] M.A. Hayat (Ed.), Colloidal Gold: Principles, Methods, and Applications, vol. 1, p. 15, Academic Press, New York, 1989.
[25] T. Kotnik, D. Miklavcic, “Analytical Description of Transmembrane Voltage Induced by Electric Fields on Spheroidal Cells,” Journal of Biophysical, 79, pp. 670-679, 2000.
[26] P.V. Gerwen, W. Laureys, G. Huyberechts, M.O. Beeck, K. Baert, J. Suls, A. Varian, W. Sansen, L. Hermans, R. Mertens, “Nanoscaled Interdigitated Electrode Arrays for Biochemical Sensor,” Transducers `97, International Conference on Solid-State Sensors and Actuators, Chicago, pp. 907-910, 1997.
[27] M.J. Madou, Fundamentals of Microfabrication, pp. 97-102, CRC Press, Florida, 1997.
[28] S.M. Sze, VLSI Technology, pp. 386-400, McGraw-Hill, New York, 1998.
[29] 莊達人,VLSI 製造技術,高立圖書,pp. 235-261,1997。
[30] B.H. Jo, L.M.V. Lerberghe, K. M. Motsegood, D. J. Beebe, “Three Dimensional Micro-Channel Fabrication in Polydimethylsiloxane (PDMS) Elastomer,” Journal of Micro- Electromechanical Systems, 9, pp. 76-81, 2000.
[31] http://www.agac.umn.edu/microarray/protocols/protocols.htm
[32] Y.C. Lin, M. Li, C.Y. Wu, W.C. Hsiao, Y.C. Chung, “Microchips for Cell-type Identification.” The seventh International Symposium on Micro Total Analysis System, μTAS 2003, California, USA, pp. 729-732, 2003.
[33] http://members.aol.com/logan20/red_tabl.html