簡易檢索 / 詳目顯示

研究生: 李長祐
Li, Chang-Yu
論文名稱: p-y曲線於超額孔隙水壓力修正係數之實驗室試驗結果探討
Laboratory Test Results Analysis on Correction Coefficient of p-y Curve in Excess Pore Water Pressure
指導教授: 倪勝火
Ni, Sheng-Huoo
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 109
中文關鍵詞: p-y曲線土壤液化超額孔隙水壓p-y修正參數
外文關鍵詞: p-y curve, soil liquefaction, excess pore water pressure, p-y correction parameters
相關次數: 點閱:118下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於臺灣位處環太平洋板塊地震帶上,因長期遭受板塊運動擠壓,造成頻繁發生地震,伴隨而來的土壤液化也層出不窮。而p-y曲線是土木工程中用於分析樁基礎受水平力作用下的應力和變形行為的一種常用方法。對於現有的p-y曲線方法通常僅考慮完全液化以及完全非液化的影響,對於不同液化狀態下,超額孔隙水壓力的影響沒有較為完善的研究。
    本研究將引用振動台樁土互制模型實驗之相關研究數據,利用LPile基樁模擬試驗分析,對於在土壤在激發不同超額孔隙水壓狀態下,p-y曲線之修正參數之相關性作探討,並且將結果和前人之研究所提出之修正法進行比對。

    Since Taiwan is located on the seismic zone of the Pacific Rim, it has been squeezed by plate movements for a long time, resulting in frequent earthquakes and accompanying soil liquefaction. The p-y curve is a common method used in civil engineering to analyze the stress and deformation behavior of pile foundations under the action of horizontal forces. The existing p-y curve method usually only considers the influence of complete liquefaction and complete non-liquefaction, and there is no relatively complete research on the influence of excess pore water pressure under different liquefaction states.
    This study will cite the relevant research data of the shaking table pile-soil interaction model experiment, and use the LPile foundation pile simulation test analysis to discuss the correlation of the-multipliers of the p-y curve under the conditions of different excess pore water pressure excitations in the soil, and Compare the results with the revised method proposed by previous studies.

    摘要 I Extented Abstract II 誌謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIV 第一章 緒論 1 1.1研究背景與動機 1 1.2研究目的與方法 2 1.3論文架構 2 第二章 文獻回顧 3 2.1土壤液化 3 2.1.1土壤液化的定義 3 2.1.2液化機制 7 2.2土壤液化的影響因素 9 2.3基樁承受側向荷重分析法 14 2.3.1彈性分析法 16 2.3.2地盤反力分析法 20 2.3.3 p-y曲線分析法 24 第三章 分析方式 26 3.1砂土p-y曲線 26 3.1.1 API砂土 26 3.1.2 Reese砂土 29 3.1.3 Rollins液化砂土 35 3.2不同液化模式下之p-y曲線 37 3.3超額孔隙水壓修正法 41 3.3.1 Liu and Dobry 修正法 42 3.3.2 Chang and Hutchinson 修正法 44 第四章 研究規劃及研究設備 48 4.1模擬分析 48 4.2研究引用試驗簡介 48 4.2.1實驗器材 48 4.2.2實驗輸入震波 50 4.3 LPile程式說明 53 4.4實驗參數設定 55 4.5模擬方法與流程 58 第五章 試驗結果與討論 60 5.1前言 60 5.2不同震動波型的曲線擬合 61 5.2.1正弦波 61 5.2.2 TCU075高頻脈衝近斷層波 65 5.2.3 CHY006遠域地震 79 5.2.4 TCU052顯著脈衝近斷層波型 85 5.3不同超額孔隙水壓之修正參數 91 5.3.1調整p修正參數擬合 91 5.3.2調整y修正參數擬合 94 5.3.3 p、y修正參數關係 97 第六章 結論與建議 98 6.1結論 98 6.2建議 99 參考文獻 100

    1. 林子媛,「近斷層地震下振動台樁土互制模型實驗」,碩士論文,國立成功大學土木工程研究所,臺南。(2022)
    2. 李喬茵,「縮尺模型樁受震時之樁土互制反應」,碩士論文,國立成功大學土木工程研究所,臺南。(2020)
    3. 肖雄,「運用 p-y 曲線分析基樁在可液化砂土之行為」,碩士論文,國立成功大學土木工程研究所,臺南。(2011)
    4. 范仲軒,「應用 p-y 曲線分析離岸風機單樁基礎於可液化海床砂質土壤之行為」,碩士論文,國立成功大學土木工程研究所,臺南。(2015)
    5. 張書瑜,「p-y 曲線應用砂土層離岸風機群樁基礎之行為分析」,碩士論文,國立成功大學土木工程研究所,臺南。(2016)
    6. 吳偉特, 「台灣地區砂性土壤液化潛能評估之初步分析」,中國土木水利季刊,第六卷,第二期,第39-70 頁。(1979)
    7. 鄭文隆, 「淺談地震作用下基礎土壤液化及液化潛能評估法.」 現代營建, 第二卷, 第一期。(1981)
    8. 莊明仁,「基樁承受側向荷重之反應分析」,國立成功大學土木工程研究所,博士論文 。(2001)
    9. 蘇曉珮,「以 p-y曲線應用於離岸風機基樁承受常時靜載重之最佳化分析」,國立成功大學土木工程研究所,碩士論文 。(2015)

    10. Ashour, M., Norris, G., and Pilling, P., “Lateral loading of a pile in layered soil using the strain wedge model.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 4, pp. 303-315. (1998)
    11. Ashford, S.A. and Rollins, K.M., “TILT: the Treasure Island liquefaction test: final report.” Report No. SSRR-2001/17, Department of Structural Engineering, Unversity of California at San Diego, California. (2002)
    12. Banerjee, P.K., and Davies, T.G., “The behavior of axially and laterally loaded single piles embedded in non-homogeneous soils.” Geotechnique, Vol. 28, No. 3, pp. 309-326. (1978)
    13. Casagrande, A.,“Characteristics of cohesionless soils affecting the stability of slopes and earth fills.” J. Boston Society of Civil Engineers, reprinted in Contribution to soil mechanics , Boston Society of Civil Engineers, pp. 257-276.(1940)
    14. Chung, K.Y.C., and Wong, I.H., “Liquefaction potential of soils with plastic fines.” Soil Dynamics and Earthquake Engineering, Southampton, Vol. 2, pp. 887-897. (1982)
    15. Chang, B. J., and Hutchinson,T. C., “Experimental evaluation of p-y curves considering development of liquefaction.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 139, No. 4, pp. 577-586. (2013)
    16. Douglas, D.I., and Davis, E.H., “The movement of buried footings due to moment and horizontal and movement if anchor plates.” Geotechnical Engineering, Vol. 14, pp. 115-132. (1964)
    17. Dash, S. R., Bhattacharya, S., Blakeborough, A., and Hyodo, M., “PY curve to model lateral response of pile foundations in liquefied soils.” Proceedings of 14th World Conference on Earthquake Engineering, Beijing, China, pp. 12-17. (2008)
    18. Guo, T., and Prakash, S., “Liquefaction silt-clay mixtures.” Proceedings of 11th World Conference on Earthquake Engineering, Auckland, New Zealand, CD Rom. (2000)
    19. Ishihara, K., Sodekawa, M., and Tanaka, Y., “Effect of overconsolidation on liquefaction characteristics of sand containg fine.” Dynamic Geotechnical Test, ASTM, STP 654, pp. 246-264. (1978)
    20. Ishibashi, I.M., Sherlif, M.A., and Cheng, W.L., “The effects of soil parameters on pore pressure rise and liquefaction prediction.” Soils and Foundations, JSSMEF, Vol. 22, No. 1, pp. 37-48. (1982)
    21. Ishihara, K., “Stability of natural deposits during earthquake.” Proceedings of International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, pp. 321-376.(1985)
    22. Ishihara, K., “Liquefaction and flow failure during earthquakes.” Geotechnique, Vol. 43, No. 3, pp. 351-415. (1993)
    23. Lee, K.L., and Fitton, J.A., “Factors affecting the cyclic loading strength of soil.” Vibration Effects of Earthquake on Soils the Foundations, ASTM, STP 450, pp. 71-96. (1969)
    24. Liu, L., and Dobry,R., “Effect of liquefaction on lateral response of piles by centrifuge model tests.” NCEER Bullentin,Vol. 9,No. 1,p. 8. (1995)
    25. Liang, R.W., Bai, X.H., and Wang J.C., “Effect of clay particle content on liquefaction of soil.” Proceedings of 12th World Conference on Earthquake Engineering, Auckland, New Zealand. (2000)
    26. Mindlin, R.D., “Forces at a point in the interior of semi-infinite solid.” Physics, Vol. 7, pp. 195-202. (1936)
    27. McClelland, B., and Focht, J.A.JR, “Soil modulus for laterally loaded piles.” Transactions, ASCE, Vol. 123, pp. 1049-1063. (1956)
    28. Matlock, H., and Reese, L.C., “Generalized solution for laterally loaded piles.” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 86, No. SM5, pp. 1220-1246. (1960)
    29. Matlock, H., “Correlation for design of laterally loaded piles in soft clay.” Proceedings, 2nd Annual Offshore Technology Conference, Houston, Texas, Vol. 1, pp. 577-594. (1970).
    30. Mulilis, J.P., “The effect of method of sample preparation on the cyclic stress-strain behavior of sands.” Report No. EERC 75-18, U. C. Berkeley Earthquake Engineering Research Center. (1975)
    31. O’Neill, M.W., and Murchison, J. M., “An evaluation of p-y in sands.” Research Report No.GT-DF02-83, Department of Civil Engineering, University of Houston, Houston, Texas. (1983)
    32. Poulos, H.G., “Behavior of laterally loaded piles: I-single pile.” Journal of the Soil Mech. And Found. Engineering Division, ASCE, Vol. 97, No. SM5, pp. 711-731. (1971a)
    33. Poulos, H.G., “Behavior of laterally loaded piles: II-group pile.” Journal of the Soil Mech. And Found. Engineering Division, ASCE, Vol. 97, NO. SM5, pp. 733-751. (1971b)
    34. Poulos, H.G., and Davis, E.N., Pile Foundation Analysis and Design, John Wiley & Sons, inc., New York. (1980)
    35. Reese, L.C., Cox, W.R., and Koop, F.D., “Analysis of laterally load piles in sand.” Proceedings of 5th Annual Offshore Technology Conference, Houston, Texas, Vol. II, pp. 473-485. (1974)
    36. Reese, L.C., and Welch, R.C., “Laterally loading of deep foundations in stiff clay.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 101, No. GT7, pp. 633-649. (1975)
    37. Rollins, K.M., Gerber, T.M., Dusty, L.J., and Ashford, S.A., “Lateral resistance of a full-scale pile group in liquefied sand.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 1, pp. 115-125. (2005)
    38. Robertson, P.K., “Suggested terminology for liquefaction.” Proceedings of the 47th Canadian Geotechnical Conference, Halifax, Canada, pp. 277-286. (1994)
    39. Seed, H.B. and Idriss, I.M., “Simplified procedure for evaluating soil liquefaction potential.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM9, pp. 1249-1273. (1971)
    40. Seed, H.B., Martin, P.P., and Lysmer, J., “The generation and dissipation of pore water pressure during soil liquefaction.” Report No. EERC 75-26, Earthquake Research Center, University of California, Berkeley, California. (1975)
    41. Seed, H.B. and Idriss, I.M., “Analysis of soil liquefaction: Niigata earthquake.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 93, No. SM3, pp. 265-290. (1976)
    42. Shen, C.K., Vrymoed J.L., and Uyeno C.K., “The effects of fines on liquefaction of sands.” Proceeding of the 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Vol. 2, pp. 381-385. (1977)
    43. Seed, H.B., and Idriss, I.M., “Ground motions and soil liquefaction during earthquakes.” Monograph Series No. 5, Earthquake Engineering Research Institute, Berkeley, AC, USA. (1982)
    44. Singh, S., “Liquefaction characteristics of silts.” Geotechnical and Geol-ogical Engineering, Vol. 14, No. 1, pp. 1-19. (1996)
    45. Terzaghi, K., “Evaluation of coefficients of subgrade reaction,” Geotechnique, Vol. 5, pp. 297-326. (1955)
    46. Winkler, E., Die Lehre Von Elastizitat Und Festigkert ( On Elasticity and Fixity ), Prague. (1867)
    47. Yoshimi, Y., Tokimatsu, K., and Hosaka, Y., “Evaluation of liquefaclion resistance of clean sands based on high-quality undisturbed samples.” Soils and Foundations, Vol. 29, No. 1, pp. 93-104. (1989)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE