簡易檢索 / 詳目顯示

研究生: 許哲維
Hsu, Che-Wei
論文名稱: 土壤水鋰同位素的初步探討:觀雲地區風化來源及過程
Preliminary Li isotope study in soil waters: weathering sources and processes at Kuan-Yun region
指導教授: 游鎮烽
You, Chen-Feng
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 61
中文關鍵詞: 矽酸鹽化學風化鋰同位素風化來源風化過程土壤水
外文關鍵詞: Silicate chemical weathering, Lithium isotope, Weathering source, Soil water
相關次數: 點閱:102下載:35
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 矽酸鹽化學風化過程中會消耗大氣中的二氧化碳,是調節長期地球氣候的重要反應,因此了解矽酸鹽化學風化是重要的課題。土壤為關鍵帶(Critical Zone)中重要的反應區,孔隙中的土壤水會和矽酸鹽進行水岩反應,因此水的化學組成可提供來自這些水/岩反應的訊息,許多前人研究也指出世界上主要河流中的同位素組成受到風化層中水岩反應有一定程度之影響。在矽酸鹽中,鋰(Lithium)是一易遷移元素,其同位素組成可作為了解矽酸鹽水岩反應及次生礦物形成過程的指標。台灣位於東亞季風帶上,秋冬之際盛行東北季風,此時也將亞洲沙塵(Asian dust)從黃土高原等經由季風帶至台灣,並透過降雨使其從大氣進入地表中。本研究針對觀雲山莊周遭的雨水及九個土壤水採樣點進行採樣,分別以ICP-OES、ICP-QMS及MC-ICP-MS分析樣品的主要元素、微量元素以及鋰同位素值(δ7Li)。
    根據觀雲的雨量、雨水及土壤水的化學及鋰同位素組成,可得知雨量多寡與雨水的鋰濃度呈負相關,與雨水的δ7Li及土壤水的鋰濃度及δ7Li則無明顯相關性,且因土壤剖面淺層之黏土礦物溶解的影響使得位於15公分處之土壤水樣品無法明顯區分乾濕季樣品的差異。雨水的來源除與代表地緣關係的平均上部大陸地殼(upper continental crust, UCC)值有關外,透過東北季風輸送而來的黃土沙塵也有一定的貢獻。觀雲土壤水的鋰濃度及鋰同位素與前人文獻比較後,除了顯示出不同地點的化學差異外,採樣方法亦可能造成土壤水之鋰化學及同位素組成不同。從土壤水的Li/Na比與鋰同位素組成的關係可知觀雲地區無明顯次生礦物分化情形,並因其位於表層而以黏土礦物溶解為主要過程。

    Silicate weathering is a crucial component of long-term evolution of climate through the consumption of atmospheric CO2. Soil where the water-rock between take place is an important reactive part in the critical zone. Lots previous studies show that isotopic compositions in river water around world has been affected by these Water-Rock reactions in the weathering zone. Lithium, a mobile minor element in silicate, is often used to understand the reactions of silicate and the processes of secondary minerals formations. Taiwan is located at East Asia monsoon zone. Therefore, aeolian dust of Loess Plateau is blown to Taiwan by northeast monsoon. In this study, we collected the rainwater and nine soil water samples at Kuan-Yun region. The compositions of major elements, trace elements and δ7Li of these samples were determined by ICP-OES, ICP-QMS and MC-ICP-MS respectively.
    A negative correlation between rainfall and Li compositions (elemental and isotopic) in the rainwater was observed. On the contrary, no correlation was shown in soil water samples. Apart from upper continental crust (UCC), the results indicated aeolian dust from Loess Plateau play a significant role on chemical and isotopic compositions of rainwater. These suggest that Li isotope composition of our soil water is mainly controlled by the dissolution of the silicate. Unlike other similar Li isotope studies in critical zone, Kuan-Yun soil water sample have relatively low δ7Li variations and no Li isotope fractionation caused by secondary phase was noticed. This could be contributed by the differences of soil composition and short soil water residence time at Kuan-Yuan area.

    摘要 I 致謝 VI 目錄 VII 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1 鋰與鋰同位素地球化學行為 2 1.2 臺灣地區的氣候及土壤特徵 6 1.3 臨界區與土壤水 8 1.3.1 臨界區 8 1.3.2 土壤水 9 1.4 研究目的 10 第二章 研究區域與樣品處理 11 2.1 研究區域概述 11 2.2 樣品採樣時間 13 第三章 研究與分析方法 14 3.1 採樣方法 14 3.2 化學試劑及標準品 14 3.3 管柱化學分離法 16 3.4 元素及同位素分析技術 20 3.4.1 元素濃度量測 20 3.4.2 鋰同位素值測量 22 第四章 結果 26 4.1 雨量及氣溫觀測資料 26 4.2 主要元素濃度 27 4.2.1 雨水的主要元素濃度 27 4.2.2 土壤水的主要元素濃度 27 4.3 鋰濃度及鋰同位素組成 31 4.3.1 雨水 31 4.3.2 土壤水 31 第五章 討論 34 5.1 大氣輸入 35 5.1.1 海鹽貢獻 35 5.1.2 大氣沙塵貢獻 37 5.2 岩石來源貢獻 39 5.2.1 碳酸鹽貢獻 39 5.2.2 矽酸鹽貢獻 40 5.3 探討鋰土壤剖面中的矽酸鹽風化行為 41 5.3.1 是否能從單一深度的土壤水中的鋰行為觀察到次生礦物的影響 41 5.3.2 建立完整的土壤剖面風化行為 44 5.3.3 土壤剖面對河流溶解相的影響 47 第六章 結論 50 第七章 參考資料 51 附錄 60

    中央氣象局觀測資料查詢。https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp
    王益崖(民41)。台灣之氣候區。台銀季刊,5,1-25。
    何春蓀(民75)。台灣地質概論—台灣地質圖說明書,第二版:經濟部中央地質調查所。
    奚樂、萬鑫森(民76)。基礎土壤物理學:國立編譯館出版。
    陳正祥(民48)。台灣地誌:敷明產業地理研究所。
    陳君榮(民92)。台灣中部橫貫公路低度變質泥岩中片狀矽酸鹽礦物之X光微組構及再結晶作用(碩士論文)。
    取自http://ir.lib.ncku.edu.tw/handle/987654321/20419
    陳晏欣(民107)。利用鋰同位素探討敏督利颱風期間濁水溪流域風化來源的變化(碩士論文)。取自http://ir.lib.ncku.edu.tw/handle/987654321/177241。
    陳尊賢、許正一(民91)。台灣的土壤:遠足文化出版社。
    陳瑋晨(民110)。利用鋰同位素探討高屏溪流域化學風化及季節性變化(碩士論文)。取自http://ir.lib.ncku.edu.tw/handle/987654321/205370
    陳肇夏(民68)。台灣中部橫貫公路沿線地質。中國地質學會專刊,3,219-236。
    楊德良(民91)。毛細管水。取自https://terms.naer.edu.tw/detail/1326000/
    經濟部水資會、台灣電力公司台灣地區水利普查工作小組(民75)。立霧溪水利普查總報告。
    滕肇芸(民91)。立霧溪中游峽谷段河道形態與影響因子之探討(碩士論文)。取自https://hdl.handle.net/11296/n977qz
    蔡呈奇、陳尊賢(民104)。台灣之土壤資源。科學研習,54。

    Anderson, S. P., Dietrich, W. E., & Brimhall Jr, G. H. (2002). Weathering profiles, mass-balance analysis, and rates of solute loss: Linkages between weathering and erosion in a small, steep catchment. Geological Society of America Bulletin, 114(9), 1143-1158.
    Bachelet, D., Neilson, R. P., Hickler, T., Drapek, R. J., Lenihan, J. M., Sykes, M. T., . . . Thonicke, K. (2003). Simulating past and future dynamics of natural ecosystems in the United States. Global Biogeochemical Cycles, 17(2).
    Başak, B., & Alagha, O. (2004). The chemical composition of rainwater over Büyükçekmece Lake, Istanbul. Atmospheric Research, 71(4), 275-288.
    Bensimon, M., Bourquin, J., & Parriaux, A. (2000). Determination of ultra-trace elements in snow samples by inductively coupled plasma source sector field mass spectrometry using ultrasonic nebulization. Journal of Analytical Atomic Spectrometry, 15(6), 731-734.
    Bluth, G. J., & Kump, L. R. (1994). Lithologic and climatologic controls of river chemistry. Geochimica et Cosmochimica Acta, 58(10), 2341-2359.
    Bockheim, J. G., Gennadiyev, A. N., Hammer, R. D., & Tandarich, J. P. (2005). Historical development of key concepts in pedology. Geoderma, 124(1-2), 23-36.
    Bouchez, J., Gaillardet, J., & von Blanckenburg, F. (2014). Weathering intensity in lowland river basins: from the Andes to the Amazon mouth. Procedia earth and planetary science, 10, 280-286.
    Bouchez, J., Von Blanckenburg, F., & Schuessler, J. A. (2013). Modeling novel stable isotope ratios in the weathering zone. American Journal of Science, 313(4), 267-308.
    Brantley, S. L., Goldhaber, M. B., & Ragnarsdottir, K. V. (2007). Crossing disciplines and scales to understand the critical zone. Elements, 3(5), 307-314.
    Brantley, S. L., & Lebedeva, M. (2011). Learning to read the chemistry of regolith to understand the critical zone. Annual Review of Earth and Planetary Sciences, 39, 387-416.
    Brimhall, G. H., & Dietrich, W. E. (1987). Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: results on weathering and pedogenesis. Geochimica et Cosmochimica Acta, 51(3), 567-587.
    Burton, K., & Vigier, N. (2012). Lithium isotopes as tracers in marine and terrestrial environments. In Handbook of environmental isotope geochemistry (pp. 41-59): Springer.
    Calmels, D., Gaillardet, J., Brenot, A., & France-Lanord, C. (2007). Sustained sulfide oxidation by physical erosion processes in the Mackenzie River basin: Climatic perspectives. Geology, 35(11), 1003-1006.
    Chadwick, O. A., & Chorover, J. (2001). The chemistry of pedogenic thresholds. Geoderma, 100(3-4), 321-353.
    Chesworth, W., & Chesworth, W. (2008). Biogeochemical cycles. Encyclopedia of Soil Science, 10, 978-971.
    Christina, L., Brzezinski, M. A., & DeNiro, M. J. (2000). A first look at the distribution of the stable isotopes of silicon in natural waters. Geochimica et Cosmochimica Acta, 64(14), 2467-2477.
    Clergue, C., Dellinger, M., Buss, H., Gaillardet, J., Benedetti, M., & Dessert, C. (2015). Influence of atmospheric deposits and secondary minerals on Li isotopes budget in a highly weathered catchment, Guadeloupe (Lesser Antilles). Chemical Geology, 414, 28-41.
    Council, N. R. (2001). Basic research opportunities in earth science: national academies Press.
    Dellinger, M., Gaillardet, J., Bouchez, J., Calmels, D., Louvat, P., Dosseto, A., . . . Maurice, L. (2015). Riverine Li isotope fractionation in the Amazon River basin controlled by the weathering regimes. Geochimica et Cosmochimica Acta, 164, 71-93.
    Dessert, C., Lajeunesse, E., Lloret, E., Clergue, C., Crispi, O., Gorge, C., & Quidelleur, X. (2015). Controls on chemical weathering on a mountainous volcanic tropical island: Guadeloupe (French West Indies). Geochimica et Cosmochimica Acta, 171, 216-237.
    Druhan, J. L., Steefel, C. I., Williams, K. H., & DePaolo, D. J. (2013). Calcium isotope fractionation in groundwater: molecular scale processes influencing field scale behavior. Geochimica et Cosmochimica Acta, 119, 93-116.
    Feller, C., Blanchart, E., & Yaalon, D. (2006). Some Major Scientists (Palissy, Buffon, Thaer, Darwin and Muller) Have. Footprints in the soil: People and ideas in soil history, 85.
    Fries, D. M., James, R. H., Dessert, C., Bouchez, J., Beaumais, A., & Pearce, C. R. (2019). The response of Li and Mg isotopes to rain events in a highly-weathered catchment. Chemical Geology, 519, 68-82.
    Gaillardet, J., Dupré, B., Louvat, P., & Allegre, C. (1999). Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159(1-4), 3-30.
    Garrels, R. M. (1983). The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. American Journal of Science, 283, 641-683.
    Golla, J. K., Kuessner, M. L., Henehan, M. J., Bouchez, J., Rempe, D. M., & Druhan, J. L. (2021). The evolution of lithium isotope signatures in fluids draining actively weathering hillslopes. Earth and Planetary Science Letters, 567, 116988.
    Granger, D., & Riebe, C. (2014). Cosmogenic nuclides in weathering and erosion.
    Hall, J. M., & Chan, L.-H. (2004). Li/Ca in multiple species of benthic and planktonic foraminifera: Thermocline, latitudinal, and glacial-interglacial variation. Geochimica et Cosmochimica Acta, 68(3), 529-545.
    Hathorne, E. C., & James, R. H. (2006). Temporal record of lithium in seawater: A tracer for silicate weathering? Earth and Planetary Science Letters, 246(3-4), 393-406.
    Hindshaw, R. S., Tosca, R., Goût, T. L., Farnan, I., Tosca, N. J., & Tipper, E. T. (2019). Experimental constraints on Li isotope fractionation during clay formation. Geochimica et Cosmochimica Acta, 250, 219-237.
    Huang, K.-F., You, C.-F., Liu, Y.-H., Wang, R.-M., Lin, P.-Y., & Chung, C.-H. (2010). Low-memory, small sample size, accurate and high-precision determinations of lithium isotopic ratios in natural materials by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 25(7), 1019-1024.
    Huh, Y., Chan, L.-H., Zhang, L., & Edmond, J. M. (1998). Lithium and its isotopes in major world rivers: implications for weathering and the oceanic budget. Geochimica et Cosmochimica Acta, 62(12), 2039-2051.
    Huh, Y., Chan, L.-H., & Edmond, J. M. (2001). Lithium isotopes as a probe of weathering processes: Orinoco River. Earth and Planetary Science Letters, 194(1-2), 189-199.
    Huh, Y., Chan, L. H., & Chadwick, O. A. (2004). Behavior of lithium and its isotopes during weathering of Hawaiian basalt. Geochemistry, Geophysics, Geosystems, 5(9).
    Jacobson, A. D., Blum, J. D., Chamberlain, C. P., Craw, D., & Koons, P. O. (2003). Climatic and tectonic controls on chemical weathering in the New Zealand Southern Alps. Geochimica et Cosmochimica Acta, 67(1), 29-46.
    Jenny, H. (2012). The soil resource: origin and behavior (Vol. 37): Springer Science & Business Media.
    Keene, W. C., Pszenny, A. A., Galloway, J. N., & Hawley, M. E. (1986). Sea‐salt corrections and interpretation of constituent ratios in marine precipitation. Journal of Geophysical Research: Atmospheres, 91(D6), 6647-6658.
    Kısakürek, B., Widdowson, M., & James, R. H. (2004). Behaviour of Li isotopes during continental weathering: the Bidar laterite profile, India. Chemical Geology, 212(1-2), 27-44.
    Kısakűrek, B., James, R. H., & Harris, N. B. (2005). Li and δ7Li in Himalayan rivers: proxies for silicate weathering? Earth and Planetary Science Letters, 237(3-4), 387-401.
    Lemarchand, E., Chabaux, F., Vigier, N., Millot, R., & Pierret, M.-C. (2010). Lithium isotope systematics in a forested granitic catchment (Strengbach, Vosges Mountains, France). Geochimica et Cosmochimica Acta, 74(16), 4612-4628.
    Li, W., Liu, X.-M., & Chadwick, O. A. (2020). Lithium isotope behavior in Hawaiian regoliths: Soil-atmosphere-biosphere exchanges. Geochimica et Cosmochimica Acta, 285, 175-192.
    Liu, C.-N., Lin, S.-F., Awasthi, A., Tsai, C.-J., Wu, Y.-C., & Chen, C.-F. (2014). Sampling and conditioning artifacts of PM2. 5 in filter-based samplers. Atmospheric Environment, 85, 48-53.
    Liu, C.-N., Lin, S.-F., Tsai, C.-J., Wu, Y.-C., & Chen, C.-F. (2015). Theoretical model for the evaporation loss of PM2. 5 during filter sampling. Atmospheric Environment, 109, 79-86.
    Liu, X.-M., Rudnick, R. L., McDonough, W. F., & Cummings, M. L. (2013). Influence of chemical weathering on the composition of the continental crust: Insights from Li and Nd isotopes in bauxite profiles developed on Columbia River Basalts. Geochimica et Cosmochimica Acta, 115, 73-91.
    Lui-Heung, C., Gieskes, J. M., Chen-Feng, Y., & Edmond, J. M. (1994). Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guaymas Basin, Gulf of California. Geochimica et Cosmochimica Acta, 58(20), 4443-4454.
    Ma, T., Weynell, M., Li, S.-L., Liu, Y., Chetelat, B., Zhong, J., . . . Liu, C.-Q. (2020). Lithium isotope compositions of the Yangtze River headwaters: Weathering in high-relief catchments. Geochimica et Cosmochimica Acta, 280, 46-65.
    Meybeck, M. (1987). Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287(5), 401-428.
    Millot, R., & Girard, J. (2007). Lithium isotope fractionation during adsorption onto mineral surfaces. Paper presented at the International Meeting on Clays in Natural & Engineered Barriers for Radioactive Waste Confinement, Lille, France.
    Millot, R., Vigier, N., & Gaillardet, J. (2010). Behaviour of lithium and its isotopes during weathering in the Mackenzie Basin, Canada. Geochimica et Cosmochimica Acta, 74(14), 3897-3912.
    Minasny, B., & McBratney, A. B. (1999). A rudimentary mechanistic model for soil production and landscape development. Geoderma, 90(1-2), 3-21.
    Minasny, B., McBratney, A. B., & Salvador-Blanes, S. (2008). Quantitative models for pedogenesis—A review. Geoderma, 144(1-2), 140-157.
    Moulton, K. L., West, J., & Berner, R. A. (2000). Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering. American Journal of Science, 300(7), 539-570.
    Négrel, P., & Roy, S. (1998). Chemistry of rainwater in the Massif Central (France): a strontium isotope and major element study. Applied geochemistry, 13(8), 941-952.
    Pistiner, J. S., & Henderson, G. M. (2003). Lithium-isotope fractionation during continental weathering processes. Earth and Planetary Science Letters, 214(1-2), 327-339.
    Pogge von Strandmann, P. A. P., Burton, K. W., James, R. H., van Calsteren, P., Gíslason, S. R., & Mokadem, F. (2006). Riverine behaviour of uranium and lithium isotopes in an actively glaciated basaltic terrain. Earth and Planetary Science Letters, 251(1-2), 134-147.
    Pogge von Strandmann, P. A. P., Fraser, W. T., Hammond, S. J., Tarbuck, G., Wood, I. G., Oelkers, E. H., & Murphy, M. J. (2019). Experimental determination of Li isotope behaviour during basalt weathering. Chemical Geology, 517, 34-43.
    Pogge von Strandmann, P. A. P., Opfergelt, S., Lai, Y.-J., Sigfússon, B., Gislason, S. R., & Burton, K. W. (2012). Lithium, magnesium and silicon isotope behaviour accompanying weathering in a basaltic soil and pore water profile in Iceland. Earth and Planetary Science Letters, 339, 11-23.
    Pogge von Strandmann, P. A. P., Frings, P. J., & Murphy, M. J. (2017). Lithium isotope behaviour during weathering in the Ganges Alluvial Plain. Geochimica et Cosmochimica Acta, 198, 17-31.
    Pogge von Strandmann, P. A. P., Jenkyns, H. C., & Woodfine, R. G. (2013). Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2. Nature Geoscience, 6(8), 668-672.
    Rasmussen, C., Troch, P. A., Chorover, J., Brooks, P., Pelletier, J., & Huxman, T. E. (2011). An open system framework for integrating critical zone structure and function. Biogeochemistry, 102(1), 15-29.
    Rastogi, N., & Sarin, M. (2005). Chemical characteristics of individual rain events from a semi-arid region in India: three-year study. Atmospheric Environment, 39(18), 3313-3323.
    Riebe, C. S., Kirchner, J. W., & Finkel, R. C. (2004). Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth and Planetary Science Letters, 224(3-4), 547-562.
    Rosner, M., Ball, L., Peucker‐Ehrenbrink, B., Blusztajn, J., Bach, W., & Erzinger, J. (2007). A simplified, accurate and fast method for lithium isotope analysis of rocks and fluids, and δ7Li values of seawater and rock reference materials. Geostandards and Geoanalytical Research, 31(2), 77-88.
    Rudnick, R. L., Tomascak, P. B., Njo, H. B., & Gardner, L. R. (2004). Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina. Chemical Geology, 212(1-2), 45-57.
    Schmitt, A.-D., Chabaux, F., & Stille, P. (2003). The calcium riverine and hydrothermal isotopic fluxes and the oceanic calcium mass balance. Earth and Planetary Science Letters, 213(3-4), 503-518.
    Steefel, C., Appelo, C., Arora, B., Jacques, D., Kalbacher, T., Kolditz, O., . . . Meeussen, J. (2015). Reactive transport codes for subsurface environmental simulation. Computational Geosciences, 19(3), 445-478.
    Steinhoefel, G., Brantley, S. L., & Fantle, M. S. (2021). Lithium isotopic fractionation during weathering and erosion of shale. Geochimica et Cosmochimica Acta, 295, 155-177.
    Tandarich, J. P., Darmody, R. G., Follmer, L. R., & Johnson, D. L. (2002). Historical development of soil and weathering profile concepts from Europe to the United States of America. Soil Science Society of America Journal, 66(2), 335-346.
    Tang, Y.-J., Zhang, H.-F., & Ying, J.-F. (2007). Review of the lithium isotope system as a geochemical tracer. International Geology Review, 49(4), 374-388.
    Ten Harkel, M. (1997). The effects of particle-size distribution and chloride depletion of sea-salt aerosols on estimating atmospheric deposition at a coastal site. Atmospheric Environment, 31(3), 417-427.
    Teng, F.-Z., McDonough, W. F., Rudnick, R., Dalpé, C., Tomascak, P., Chappell, B. W., & Gao, S. (2004). Lithium isotopic composition and concentration of the upper continental crust. Geochimica et Cosmochimica Acta, 68(20), 4167-4178.
    Tipper, E. T., Calmels, D., Gaillardet, J., Louvat, P., Capmas, F., & Dubacq, B. (2012). Positive correlation between Li and Mg isotope ratios in the river waters of the Mackenzie Basin challenges the interpretation of apparent isotopic fractionation during weathering. Earth and Planetary Science Letters, 333, 35-45.
    Tomascak, P. B., Tera, F., Helz, R. T., & Walker, R. J. (1999). The absence of lithium isotope fractionation during basalt differentiation: new measurements by multicollector sector ICP-MS. Geochimica et Cosmochimica Acta, 63(6), 907-910.
    Tomascak, P. B. (2004). Developments in the understanding and application of lithium isotopes in the earth and planetary sciences. Reviews in Mineralogy and Geochemistry, 55(1), 153-195.
    Tong, F., Xiao, Y., Sun, H., Wang, Y., Wan, H., Gou, L.-F., . . . Hou, Z. (2021). Lithium isotopic features of Quaternary basaltic saprolite, Zhanjiang, China: Atmospheric input and clay-mineral adsorption. Science of The Total Environment, 785, 147235.
    Velbel, M. A. (1993). Temperature dependence of silicate weathering in nature: How strong a negative feedback on long-term accumulation of atmospheric CO2 and global greenhouse warming? Geology, 21(12), 1059-1062.
    Verney-Carron, A., Vigier, N., & Millot, R. (2011). Experimental determination of the role of diffusion on Li isotope fractionation during basaltic glass weathering. Geochimica et Cosmochimica Acta, 75(12), 3452-3468.
    Vigier, N., Burton, K. W., Gislason, S., Rogers, N., Schaefer, B., & James, R. (2002). Constraints on basalt erosion from Li isotopes and U-series nuclides measured in Iceland rivers. Geochimica et Cosmochimica Acta, 66(15A), A806-A806.
    Vigier, N., Decarreau, A., Millot, R., Carignan, J., Petit, S., & France-Lanord, C. (2008). Quantifying Li isotope fractionation during smectite formation and implications for the Li cycle. Geochimica et Cosmochimica Acta, 72(3), 780-792.
    Vigier, N., Gislason, S. R., Burton, K., Millot, R., & Mokadem, F. (2009). The relationship between riverine lithium isotope composition and silicate weathering rates in Iceland. Earth and Planetary Science Letters, 287(3-4), 434-441.
    Wang, J. (2019). Linkages between fluid flow paths, reactive gases, and chemical weathering across a shale bedrock hillslope. Master’s thesis. University of Illinois at Urbana-Champaign. http://hdl .handle .net /2142 /105930.
    Wang, Q.-L., Chetelat, B., Zhao, Z.-Q., Ding, H., Li, S.-L., Wang, B.-L., . . . Liu, X.-L. (2015). Behavior of lithium isotopes in the Changjiang River system: Sources effects and response to weathering and erosion. Geochimica et Cosmochimica Acta, 151, 117-132.
    West, A. J., Bickle, M. J., Collins, R., & Brasington, J. (2002). Small-catchment perspective on Himalayan weathering fluxes. Geology, 30(4), 355-358.
    West, A. J., Galy, A., & Bickle, M. (2005). Tectonic and climatic controls on silicate weathering. Earth and Planetary Science Letters, 235(1-2), 211-228.
    White, A. F., & Blum, A. E. (1995). Effects of climate on chemical_ weathering in watersheds. Geochimica et Cosmochimica Acta, 59(9), 1729-1747.
    White, A. F., Schulz, M. S., Stonestrom, D. A., Vivit, D. V., Fitzpatrick, J., Bullen, T. D., . . . Blum, A. E. (2009). Chemical weathering of a marine terrace chronosequence, Santa Cruz, California. Part II: Solute profiles, gradients and the comparisons of contemporary and long-term weathering rates. Geochimica et Cosmochimica Acta, 73(10), 2769-2803.
    Widory, D., Petelet-Giraud, E., Négrel, P., & Ladouche, B. (2005). Tracking the sources of nitrate in groundwater using coupled nitrogen and boron isotopes: a synthesis. Environmental Science & Technology, 39(2), 539-548.
    Wimpenny, J., Gíslason, S. R., James, R. H., Gannoun, A., Von Strandmann, P. A. P., & Burton, K. W. (2010). The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt. Geochimica et Cosmochimica Acta, 74(18), 5259-5279.
    Witherow, R. A., Lyons, W. B., & Henderson, G. M. (2010). Lithium isotopic composition of the McMurdo Dry Valleys aquatic systems. Chemical Geology, 275(3-4), 139-147.
    Wolff-Boenisch, D., Gislason, S. R., Oelkers, E. H., & Putnis, C. V. (2004). The dissolution rates of natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from 25 to 74 C. Geochimica et Cosmochimica Acta, 68(23), 4843-4858.
    Wu, Y., Zhang, J., Ni, Z., Liu, S., Jiang, Z., & Huang, X. (2018). Atmospheric deposition of trace elements to Daya Bay, South China Sea: Fluxes and sources. Marine pollution bulletin, 127, 672-683.
    Xu, Z., Li, T., Li, G., Hedding, D. W., Wang, Y., Gou, L.-F., . . . Chen, J. (2021). Lithium isotopic composition of soil pore water: Responses to evapotranspiration. Geology.
    Yoshimura, T., Araoka, D., Kawahata, H., Hossain, H., & Ohkouchi, N. (2021). The influence of weathering, water sources, and hydrological cycles on lithium isotopic compositions in river water and groundwater of the Ganges–Brahmaputra–Meghna River system in Bangladesh. Frontiers in Earth Science, 9, 535.
    Zack, T., Tomascak, P. B., Rudnick, R. L., Dalpé, C., & McDonough, W. F. (2003). Extremely light Li in orogenic eclogites: the role of isotope fractionation during dehydration in subducted oceanic crust. Earth and Planetary Science Letters, 208(3-4), 279-290.
    Zhang, L., Chan, L.-H., & Gieskes, J. M. (1998). Lithium isotope geochemistry of pore waters from Ocean Drilling Program Sites 918 and 919, Irminger Basin. Geochimica et Cosmochimica Acta, 62(14), 2437-2450.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE