簡易檢索 / 詳目顯示

研究生: 呂忠侑
Lu, Chung-Yu
論文名稱: 聚丙烯腈穿插之交聯型聚醚二胺高分子電解質的合成與其於鋰電池之應用
Synthesis and Application of Polyacrylonitrile Interpenetrating Crosslinked-Polyetherdiamines based Polymer Electrolyte for Lithium Batteries
指導教授: 郭炳林
Kuo, Ping-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 73
中文關鍵詞: 鋰離子電池高分子電解質聚丙烯腈
外文關鍵詞: Lithium-ion battery, polymer electrolyte, polyacrylonitrile
相關次數: 點閱:140下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用氧化還原聚合法合成聚丙烯腈接枝嵌段(聚醚二胺)共聚高分子,並和聚醚二胺和PEGDE進行反應,製備出含聚丙烯腈交聯型高分子電解質膜(XANE),進而應用於鋰離子電池上。本研究利用FT-IR和1HNMR鑑定聚丙烯腈接枝嵌段(聚醚二胺)共聚高分子結構;由SEM觀察其含聚丙烯腈交聯型高分子電解質膜的表面型態;經由DSC結果可得知當添加聚丙烯腈接枝嵌段(聚醚二胺)共聚高分子,可破壞PEO之結晶。於電化學性質方面,離子傳導度的量測,結果顯示含聚丙烯腈交聯型高分子電解質膜的離子傳導度於25~80 ℃下可達1×10-3 S/cm 以上;於電池效能應用下,在不同充放電速率下(0.1~3 C),含聚丙烯腈交聯型高分子電解質膜的半電池電容值甚至更高於商用隔離膜,更特別注意的是,含聚丙烯腈交聯型高分子電解質膜也展現出優秀的充放電循環穩定性,經過了100圈1C放電下,仍然有97%以上的庫倫效率值。本研究所製備之含聚丙烯腈交聯型高分子電解質膜具有上述良好的性質,使得此高分子電解質膜同時具備扮演離子導體和隔離膜的角色。

    Synthesis of Polyetherdiamines-PAN via redox polymerization has been accomplished and react with Polyetherdiamines and PEGDE for polymer electrolyte membrane (XANE). Polyetherdiamines-PAN was characterized with FT-IR and 1H NMR analysis to confirm the chemical structure. The XANE membrane surface characterization of membranes could be seen by SEM. The DSC result, indicates that the PEO crystallinity was deteriorated by the addition of Polyetherdiamines-PAN. XANE ionic conductivity can be up to above 1×10-3 S/cm from 25 to 80 ℃. For battery application, and under all charge/discharge rates (from 0.1 to 3 C), the specific half-cell capacities of XANE membrane are higher than those of the commercial separator. More specifically, XANE has excellent cycling stability, i.e., the half-cell of the XANE membrane still exhibited more than 97% columbic efficiency after 100 cycles at 1 C discharge. The advantageous properties of the polymer electrolyte membrane allow it to act as both an ionic conductor as well as a separator .

    中文摘要 I Abstract II 誌謝 III 目次 IV 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 第二章 文獻回顧 5 2-1 鋰離子電池之工作原理 5 2-2 正極材料 6 2-2-1 LiFePO4 正極材料 7 2-2-2 LiCoO2 正極材料 8 2-3 負極材料 9 2-3-1 碳材負極材料 11 2-3-2 鋰鈦複合氧化物負極材料 12 2-4 電解質 13 2-4-1 塑化劑 14 2-4-2 導電鋰鹽 15 2-4-3 高分子電解質 15 2-4-3-1 固態高分子電解質 16 2-4-3-2 膠態高分子電解質 18 2-4-3-3 複合高分子電解質 20 2-4-4 隔離膜 21 2-5 交流阻抗分析 23 2-5-1 基礎電路簡介 23 2-5-2 交流阻抗分析 26 第三章 實驗 30 3-1 實驗藥品與材料 30 3-2 儀器設備 32 3-3 樣品製備 33 3-3-1 合成聚丙烯腈接枝嵌段(聚醚二胺)共聚高分子 33 3-3-2 含聚丙烯腈交聯型高分子電解質膜之製備 34 3-3-3 含聚丙烯腈交聯型高分子膠態電解質膜之製備 35 3-4 實驗分析儀器與裝置 36 3-4-1 傅立葉轉換紅外線光譜儀(FTIR) 36 3-4-2 核磁共振光譜(1H NMR) 36 3-4-3 掃描式電子顯微鏡(SEM) 36 3-4-4 熱重分析(Thermogravimetric analysis,TGA) 37 3-4-4-1 含聚丙烯腈交聯型高分子電解質膜熱重分析 37 3-4-4-2 含聚丙烯腈交聯型高分子膠態電解質膜熱重分析 37 3-4-5 熱轉移性質(Thermal transition property) 37 3-4-6 電解液吸附量(Electrolyte uptake) 38 3-4-7 離子傳導度(Ionic conductivity) 38 3-4-8 線性掃描伏安法(Linear sweep voltammogram,LSV) 39 3-5 電池組裝測試 40 3-5-1 LiFePO4正極之極片製作 40 3-5-2 鈕扣型電池組裝 40 3-5-3 電池性能測試方法步驟 41 3-6 實驗流程 42 第四章 結果與討論 43 4-1 傅立葉轉換紅外線光譜儀(FTIR) 43 4-2 核磁共振光譜(1H NMR) 45 4-3 掃描式電子顯微鏡(SEM) 46 4-4 熱重分析(Thermogravimetric analysis,TGA) 48 4-5 熱轉移性質(Thermal transition property) 51 4-6 電解液吸附量(Electrolyte uptake) 53 4-7 離子傳導度(Ionic conductivity) 54 4-8 線性掃描伏安法(Linear scanning voltammogram) 57 4-9 半電池性能測試 59 4-10 全電池性能測試 65 第五章 結論 69 第六章 參考文獻 71

    1. J. Tarascon, M. Armand, M.Nature, 414, 359-367, 2001.
    2. 林振華, 林振富, 充電式鋰離子電池, 2001.
    3. C. Sun, S. Rajasekhara, J. B. Goodenough, F. Zhou, J. Am. Chem. Soc, 133, 2132-2135, 2011.
    4. 徐宗模, PP/HDPE/PP 微多孔膜之製備及作為鋰電池隔離膜之研究, 2012.
    5. 曾國原, 合成奈米二氧化鈦修飾固態高分子電解質之鋰離子導電機制探討, 2003.
    6. 詹勗忠, 含烯環狀酯類電解液添加劑對石墨材料表面結構及電池特性之影響研究, 2009.
    7. O. Toprakci, H. A. K. Toprakci, L. W. Ji, X. W. Zhang, KONA Powder and Particle Journal, 28, 50-73, 2010.
    8. A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc, 144, 1188-1194, 1997.
    9. Z. Liu, J. Scott Cronin, Y. C. K. Chen-Wiegart, J. R. Wilson, K. J. Yakal-Kremski, J. Wang, K. T. Faber, S. A. Barnett, J. Power Sources, 227, 267-274, 2013.
    10. Y. Shao-Horn, L. Croguennec, C. Delmas, E. C. Nelson, M. A. O'Keefe, Nat Mater, 2, 464-467, 2003.
    11. L. B. Ebert, Rev. Mater. Sci, 6, 181-211, 1976.
    12. J. O. Besenhard, J. Power Sources, 77, 267-276, 1976.
    13. G. K. Wertheim, P. M. Van Attekum, Solid State Comm, 33, 1127-1130, 1980.
    14. V. A. Nalimova, D. Guérard, M. Lelaurain, O. V. Fateev, Carbon, 2, 177-181, 1995.
    15. J. Jiang, J. R. Dahn, Electrochim Acta, 49, 4599-4604, 2004.
    16. K. Xu, Chem. Rev, 104, 4303-4417, 2004.
    17. T. F. Yi, L. J. Jiang, J. Shu, C. B. Yue, R. S. Zhu, H. B. Qiao, J. Phys. Chem. Solids, 71, 1236-1242, 2010.
    18. M. T. Weller, M. E. Brenchley, D. C. Apperlry, N. A. Davies, Solid State, 3, 103, 1994
    19. M. B. Armand, J. R. MacCallum, Elservier, 1987.
    20. D. E. Fenton, J. M. Parker, P. V. Wright, Polymer, 14, 589, 1973.
    21. P. V. Wright, Polymer. J, 7, 319, 1975.
    22. M. B. Armand, J. R. MacCallum, C. A. Vincent(Eds.), Polymer Electrolyte Reviews, 1987.
    23. M. B. Armand, J. R. MacCallum, Polymer Electrolyte Reviews-Ι, 1987.
    24. F. M. Gray, Solid Polymer Electrolytes, 1991.
    25. M. Armand, W. Gorecki, R. Andreani, B. Scrosati, Proceedings in the second International Meeting on Polymer Electrolytes, 1990.
    26. M. C. Wintersgill, J. J. Fontanella, Polymer Electrolyte Review, 1989.
    27. C. Berthier, W. Gorecki, Solid State Ionics, 11, 91, 1983.
    28. J. L. Bennett, A. A. Dembek, H. R. Allcock, Chem. Mater, 1, 14, 1989.
    29. F. B. Dias, B. J. Veldhuis, J. Power Sources, 88, 169-191, 2000.
    30. G. Feullade, P. Perche, J. Appl. Electrochem, 5, 63, 1975.
    31. T. Nagatomo, C. Ichikawa, O. Omato, J. Electrochem. Soc, 134, 305, 1987.
    32. C. Berthier, W. Gorocki, M. Minier, Solid State Ionic, 11, 91, 1983.
    33. Y. Matsuo, J. Kuwna, Solid State Ionics, 79, 295, 1995.
    34. E. Quartarone, C. Tomasi, P. Mustarelli, A. Magistris, Electrochemica Acta, 43, 1315 , 1998.
    35. M. Forsyth, T. Sun, D. R. Mactarlane, A. J. Hill, J. Polymer. Sci, 38, 341, 2000.
    36. J. E. Weston, B. C. Steele, Solid State Ionics, 7, 75, 1982.
    37. F. Capuano, F. Croce, B. Scrosati, J. Electrom. Soc, 138, 1991.
    38. 黃可龍, 王兆翔, 劉素琴, 鋰離子電池原理與技術, 2010.
    39. W. Wieczorek, P. Lipka, G. Zukowska, H. Wycislik, J. Phys. Chem. B, 102, 6968, 1998.
    40. 陳翁釧, 謝登存, 工業材料, 99-103, 2004.
    41. X. Qian, Materials Chemistry and Physics, 74, 98-103, 2002.
    42. F. Gray, Solid polymer electrolytes: fundamentals and technological applications, 1991.
    43. R. Linford, Electrochemical science and technology of polymers: Kluwer Academic Pub, 1990.
    44. I. E. Kelly, J. R. Owen, B. C. H. Steele, J. Power Sources, 14, 13, 1985.

    無法下載圖示 校內:2018-08-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE