簡易檢索 / 詳目顯示

研究生: 周靜宜
Chou, Ching-Yi
論文名稱: 廣義相對論的仿射群建構
Affine Group formulation of General Relativity
指導教授: 許祖斌
Soo, Cho-Pin
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 92
中文關鍵詞: 仿射群廣義相對論
外文關鍵詞: affine algebra, General Relativity
相關次數: 點閱:68下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在宇宙常數不為零中,四維量子重力哈密頓約束可以改寫為仿射代數關係式。意即:仿射量子機制可以應用到不只是純重力場之下的哈密頓約束,也可延伸到包含費米子場、希格斯場以及其他規範場的粒子物理標準模型。精確量子態可透過仿射群論及仿射基準態來建構。因為哈密頓約束改寫為仿射代數關係式時只需陳–西蒙斯泛函(Chern-Simons functional)的虛部,而非整個泛函。因此可確保仿射代數的生成元(generators)均為厄米特。
      本論文也介紹Ashtekar變數以及探討維持實相空間的條件。含粒子物理標準模型的Ashtekar變數必須是複數。但是,CPT定理確立了所有符合勞倫茲對稱及自旋–統計規則的場論會將作用量及Ashtekar變數映照至他們的厄米特共軛。即使有費米子所引起的複雜化,我們也可將維持實相空間的條件改寫為CPT–偽厄米關係式。

    The Hamiltonian constraint of four-dimensional gravity with Lorentzian signature is reformulated as an affine algebra relation. It is remarkable that the affine quantization program of Klauder is applicable to not just pure gravity but also when fermions, Yang-Mills and Higgs fields of the whole Standard Model are taken into account, provided the cosmological constant is non-vanishing. Techniques of affine group representations are used to construct exact solutions from a fiducial state, and algebraic affine group methodology and results are employed to study them. The crucial observation that just the imaginary part, rather than the full Chern-Simons functional, is needed in the reformulation of the Hamiltonian constraint of pure gravity theory as an affine algebra ensures that the generators of the algebra are all Hermitian. The extension to full Standard Model incorporating Weyl fermions (with Hermitian action) with Higgs and Yang-Mills fields is also carried out. Within the context of this work, all physical states of quantum gravity must come from representations of the affine algebra. It is intriguing the formulation of the Hamiltonian constraint as an affine algebra is predicated upon a non-vanishing cosmological constant.

    Ashtekar variables are introduced and the associated reality conditions are studied. With Standard Model fermions, the necessity of using complex (anti-)self-dual Ashtekar connection is pointed out. A key observation is that CPT maps the Ashtekar variable to its Hermitian adjoint. Moreover, with Lorentz invariance and spin-statistics rule, the CPT theorem ensures that the action is mapped to its Hermitian adjoint under CPT. Thus despite the complications which arise from fermions, the generic reality condition for the Ashtekar connection can be formulated as a pseudo-Hermiticity condition with respect to CPT even in the presence of fermions and other Standard Model fields.

    Contents 1 Introduction and overview---4 2 Preliminaries, Ashtekar variables in General Relativity , and pseudo-Hermiticity---8 2.1 Ashtekar connection---10 2.1.1 Gravity with Standard Model Weyl fermions should couple to anti-self-dual (complex) Ashtekar connection---12 2.1.2 Samuel-Jacobson-Smolin action, and Weyl coupling of fermion to Ashtekar connection---13 2.2 Pseudo-Hermiticity formulation and the Ashtekar-Wheeler-DeWitt operator---15 2.2.1 Pure gravity and constraints---15 2.2.2 Pseudo-Hermiticity relations of basic variables and the Ashtekar-Wheeler-DeWitt operator---16 2.2.3 Factor-ordering of super-Hamiltonian operator and pseudo-Hermiticity relations---17 2.2.4 Constraint algebra of general factor-ordering of super-Hamiltonian constraints---18 2.3 Pseudo-Hermiticity, and Ashtekar-Wheeler-DeWitt operator with inclusion of spin-1/2 fermions---20 2.3.1 Fermion contribution to super-Hamiltonian constraint---21 2.3.2 Pseudo-Hermiticity relations of super-Hamiltonian with inclusion of spin-1/2 fermions---22 2.3.3 Closure of super-Hamiltonian constraint algebra with fermionic fields---24 2.4 Hermitian super-Hamiltonian operator with inclusion of fermionic matter and Higgs fields---25 2.4.1 Spin-0 Higgs field and Spin-1 Yang-Mills field---27 2.4.2 Hermitian spin-1/2 theory and its contribution to the super-Hamiltonian constraint---27 2.5 Parity transformation of holonomy and flux operators in Loop Quantum Gravity---29 2.6 Summary of reality conditions and pseudo-Hermicity conditions for pure gravity, and for Standard Model coupled to gravity---30 3 Affine group representation formalism for four-dimensional , Lorentzian, quantum gravity---32 3.1 Introduction---32 3.2 Dirac quantization procedure---34 3.3 Reformulation of the Hamiltonian constraint---35 3.4 Affine group and quantum gravity with Ashtekar variables---38 3.5 Algebraic quantization---40 3.5.1 Construction of the Hilbert space H_Phys---42 3.5.2 General quantum affine group element---44 3.5.3 Normalizability and inner product---45 3.6 Standard Model coupled to pure General Relativity---45 3.6.1 Results from the metric-ADM formalism---46 3.6.2 Inclusion of fermions, and Ashtekar-ADM triad variables---47 3.6.3 Fermionic contribution to Hamiltonian constraints---50 3.6.4 The kinematic constraints for Fermionic field in Standard Model---51 3.6.5 Affine algebra representation of Hamiltonian constraint in Standard Model coupled to Gravity---53 3.7 Summary of affine algebraic formulation in four-dimensional Lorentzian quantum gravity---55 4 Supplementary computations, verifications and proofs---57 4.1 P or CPT-pseudo-Hermiticity relation for Ashtekar connection---57 4.2 The proof of PAP = A† and P(~E)P = −(~E)---58 4.2.1 The proof of PAP = A†---58 4.2.2 The proof P(~E)P = −(~E)---60 4.3 Solution of factor ordering of super-Hamiltonian constraint from consideration of P/CPT-pseudo-Hermiticity---61 4.4 Computation of constraint algebra for general ordering of super-Hamiltonian constraint---61 4.4.1 Explicit calculations---64 4.5 Detailed derivation of the torsion part of Ashtekar connection---70 4.5.1 Generating function for torsion part of Ashtekar connection---72 4.6 CPT transformation of fermionic contributions to super-Hamiltonian constraint for Weyl and Hermitian Weyl actions---72 4.7 pseudo-Hermiticity and commutation relation of fundamental loop variables---74 5 Conclusions and summary of major results---79 A Measure, inner product and coherent states associated with the affine group---81 B Proof that the real part of the Chern-Simons functional Poisson-commutes with the volume element---85 C CPT and transformation properties of the affine states---88 Bibliography---90

    [1] Ashtekar A 1986 Phys. Rev. Lett. 57 2244; Ashtekar A 1987 Phys. Rev. D 36 1587
    [2] Ashtekar A 1991 Lectures on Non-Perturbative Canonical Gravity (Singapore:World Scientific)
    [3] Ashtekar A, Romano J D and Tate R S 1989 Phys. Rev. D 40 2572-87.
    [4] Ashtekar A, Lewandowski J, Marolf D, Mourao J, and Thiemann T 1995 J. Math. Phys. 36 6456-93
    [5] Ashtekar A and Tate R S 1994 J. Math. Phys. 35 6434-70
    [6] Soo C 1999 Phys. Rev. D 59, 045006.
    [7] Soo C 1995 Phys. Rev. D 52, 3484-93.
    [8] Soo C 1996 Phys. Rev. D 53, 5682-91.
    [9] Soo C 2007 Class. Quantum Grav. 24, 1547-55.
    [10] Soo C 2002 Class. Quantum Grav. 19, 1051-63.
    [11] Smolin L and Soo C 1995 Nucl. Phys. B 449, 289-314.
    [12] Soo C 2009 Fermion couplings to spin connection and their generalizations International conference on Quantum Gravity (Loops) (Beijing Normal University, Beijing, China)
    [13] Chou C, Ita E and Soo C 2013 Class. Quantum Grav. 30, 065013.
    [14] Chou C, Ita E and Soo C 2014 Ann. Phys. 343, 153-163.
    [15] Thiemann T 2007 Modern Canonical Quantum General Relativity (Cambridge University Press)
    [16] Mercuri S 2006 Phys. Rev. D 73, 084016.
    [17] Bojowald M and Das R 2008 Phys. Rev. D 78, 064009.
    [18] Bayes R. et al. (TWIST Collaboration) 2011 Phys. Rev. Lett.106, 041804.
    [19] Dolan B.P. 1989 Phys. Lett. B 233, 89-92.
    [20] Immirzi G 1993 Class. Quantum Grav. 10, 2347-52.
    [21] Kodama H 1990 Phys. Rev. D 42 2548-65
    [22] Smolin L 2002 Quantum gravity with a positive cosmological constant Preprint hep-th/0209079v1; Soo C 2002 Class. Quantum Grav. 19 1051-63
    [23] Witten E 2003 A Note On The Chern-Simons And Kodama Wavefunctions Preprint gr-qc/0306083v2
    [24] Dirac P 1964 Lectures on quantum mechanics (Yeshiva University Press, New York)
    [25] Penrose R and Rindler W 1986 Spinors and spacetime vol.2 (Cambridge University Press)
    [26] Klauder J R 2002 Class. Quantum Grav. 19 817-26
    [27] Klauder J R 1999 J. Math. Phys. 40 5860-82
    [28] Watson G and Klauder J R 2000 J. Math. Phys. 41 8072-82
    [29] Klauder J R 2001 J. Math. Phys. 42 4440-65
    [30] Aslaksen E W and Klauder J R 1969 J. Math. Phys. 10 2267-75
    [31] Szabados L.B. 2002 Class. Quantum Grav. 19, 2375-92.
    [32] Szabados L.B. 2008 Class. Quantum Grav. 25, 095005.
    [33] Holst S 1996 Phys. Rev. D 53 5966-69
    [34] Corichi A and Reyes J D 2012 J. Phys. : Conf. Ser. 360 012021
    [35] Dirac P 1964 Lectures on quantum mechanics (Yeshiva University Press, New York)
    [36] Thiemann T 1996 Phys. Lett. B 380 257-64
    [37] Ali S T , Atakishiyev N M, Chumakov S M and Wolf K B 2000 Ann. Henri Poincare 1 685-714
    [38] G.Luders, Kongl. Dansk. Medd. Fys 28 (1954) NO.5; Pauli W 1955 Niels Bohr and the Development
    of Physics, ed.W.Pauli, L.Rosenfeld and V.Weisskopf,
    McGraw- Hill, New York; Lee, T.D. 1981
    Particle Physics and Introduction to Field Theory (Harwood Academic Publishers)
    [39] Barbero F 1995 Phys. Rev. D 51 5498; Barbero F 1995 Phys. Rev. D 51 5507-10
    [40] E.C.G. Sudarshan and R.E. Marshak, Proc. Padua-Venice Conf. on Mesons and Recently Discovered Particles (1957); ibid., Development of Weak Interaction The-
    ory, ed. P. Kabir, Gordon and Breach, New York (1963).
    [41] Feynman R.P. and Gell-Mann M. 1958, Phys. Rev. 109 193.
    [42] Michel L. 1949 Nature 163 959; Proc. Phys. Soc. 63 A (1950) 514

    下載圖示 校內:2019-07-24公開
    校外:2020-01-01公開
    QR CODE