| 研究生: |
郭育勝 Kuo, Yu-Sheng |
|---|---|
| 論文名稱: |
具有刺激響應與螢光特性之高分子微胞在藥物傳遞系統上的應用 Stimuli-responsive and Fluorescent Polymeric Micelles for the Application of Drug Delivery System |
| 指導教授: |
吳文中
Wu, Wen-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 雙親性嵌段共聚高分子 、光敏感性高分子 、溫度敏感性高分子 、聚集誘發螢光 、藥物載體 |
| 外文關鍵詞: | amphiphilic block copolymer, photo-responsive polymer, thermo-responsive polymer, aggregation-induced emission, drug carriers |
| 相關次數: | 點閱:93 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此論文針對一系列新穎雙親性嵌段共聚高分子poly(triethylene glycol methacrylate)-b-poly(o-nitrobenzyl methacrylate) (PTEGMA-b-PNBMA, P0)與Poly(triethylene glycol methacrylate)-b-Poly[2-nitrobenzyl methacrylate-co-2- (1,2,3,4,5-pentaphenyl-1H-silol-1-yloxy)ethyl methacrylate] (PTEGMA-b- P[NBMA-co-AIE], P1,P2)所自組裝形成的高分子微胞之奈米結構與光物理性質進行探討。將具有Aggregation-Induced Emission (AIE)性質之螢光單體引入P1及P2之疏水鏈段,則其自組裝形成微胞具螢光性質,可運用在追蹤微胞位置做為細胞標記之應用。P0, P1, P2之疏水鏈段為具光敏性高分子PNBMA,其照光會裂解並由疏水性轉為親水性。P0, P1, P2之親水段為具溫感性質之高分子PTEGMA,當其溫度低於最低臨界溶解溫度(lower critical solution temperature, LCST)時,PTEGMA為親水性;當溫度高於LCST時,PTEGMA則由親水性轉為疏水性。利用此環境應答的特性造成高分子奈米載體之崩解,以達到控制藥物釋放的目的。
PPS-HEMA螢光基團在微胞核心狀態時之螢光強度較溶於有機溶劑中強,證明PPS-HEMA具有AIE的性質,利用此特性可測量P1及P2之臨界微胞濃度(Critical Micelle Concentration, CMC)分別為3.9 nM與 2.2nM。測量高分子微胞水溶液在不同溫度下之穿透度來求得LCST為41 ~ 42℃;藉由DLS測量高分子微胞粒徑約42.59 ~ 50.22 nm。含PPS-HEMA螢光基團之高分子P2運用於包覆藥物Doxorubincin(Dox)上,由於PPS-HEMA之螢光放射波長與Dox之吸收光譜重疊,當兩者距離小於10 nm時會產生Förster Resonance Energy Transfer (FRET),可利用此效應確認Dox是否成功包覆於高分子微胞之核心。利用不同環境響應條件進行藥物釋放,實驗結果顯示,藥物載體經照光及提高溫度皆可促進P2/Dox微胞之Dox釋放。
In this study, we successfully synthesize a series of amphiphilic block copolymers PTEGMA-b-P(NBMA-co-AIE), containing thermo- and photo-responsive moieties and fluorophores with aggregation induced emission. These amphiphilic block copolymers could self-assemble in aqueous solution to form micelles due to their amphiphilic characteristic. The hydrophobic segments form the core and the hydrophilic segments form the corona of the micelles. Herein, the polymeric micelles are utilized as nanocarriers for the chemotherapy drug, doxorubicin (Dox), encapsulated by the oil-in-water emulsion procedure. The successful encapsulation and subsequent release of drug could be monitored by the occurrence and absence of Förster Resonance Energy Transfer (FRET) from micelles to drug. The controlled drug release is triggered either by UV irradiation or higher temperature.
[1] P. Bahadur, Principles of polymer science, 2nd ed. ed., Alpha Science International, Oxford, U.K. :, 2005.
[2] K. Letchford, H. Burt, A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes, European journal of pharmaceutics and biopharmaceutics, 65 (2007) 259-269.
[3] S. Förster, M. Antonietti, Amphiphilic block copolymers in structure‐controlled nanomaterial hybrids, Advanced Materials, 10 (1998) 195-217.
[4] Amphiphilic block copolymers : self-assembly and applications, Elsevier, Amsterdam ; New York :, 2000.
[5] D.E. Discher, A. Eisenberg, Polymer vesicles, Science, 297 (2002) 967-973.
[6] F. Ahmed, D.E. Discher, Self-porating polymersomes of PEG–PLA and PEG–PCL: hydrolysis-triggered controlled release vesicles, Journal of controlled release, 96 (2004) 37-53.
[7] K. Kataoka, A. Harada, Y. Nagasaki, Block copolymer micelles for drug delivery: design, characterization and biological significance, Advanced drug delivery reviews, 47 (2001) 113-131.
[8] X. Shuai, H. Ai, N. Nasongkla, S. Kim, J. Gao, Micellar carriers based on block copolymers of poly (ε-caprolactone) and poly (ethylene glycol) for doxorubicin delivery, Journal of Controlled Release, 98 (2004) 415-426.
[9] T. Thambi, V. Deepagan, C.K. Yoo, J.H. Park, Synthesis and physicochemical characterization of amphiphilic block copolymers bearing acid-sensitive orthoester linkage as the drug carrier, Polymer, 52 (2011) 4753-4759.
[10] K. Matyjaszewski, J. Spanswick, Controlled/living radical polymerization, Materials today, 8 (2005) 26-33.
[11] K. Matyjaszewski, J. Xia, Atom transfer radical polymerization, Chemical Reviews, 101 (2001) 2921-2990.
[12] T.E. Patten, K. Matyjaszewski, Atom transfer radical polymerization and the synthesis of polymeric materials, Advanced Materials, 10 (1998) 901-915.
[13] W.C. Wu, C.Y. Chen, Y. Tian, S.H. Jang, Y. Hong, Y. Liu, R. Hu, B.Z. Tang, Y.T. Lee, C.T. Chen, Enhancement of Aggregation‐Induced Emission in Dye‐Encapsulating Polymeric Micelles for Bioimaging, Advanced Functional Materials, 20 (2010) 1413-1423.
[14] J.M. Schumers, C.A. Fustin, J.F. Gohy, Light‐Responsive Block Copolymers, Macromolecular rapid communications, 31 (2010) 1588-1607.
[15] S. Keller, J.T. Wilson, G.I. Patilea, H.B. Kern, A.J. Convertine, P.S. Stayton, Neutral polymer micelle carriers with pH-responsive, endosome-releasing activity modulate antigen trafficking to enhance CD8< sup>+</sup> T cell responses, Journal of Controlled Release, (2014).
[16] K. Fukuda, R. Enomoto, K. Ishihara, Y. Morishima, S.-i. Yusa, Thermo-responsive and biocompatible diblock copolymers prepared via reversible addition-fragmentation chain transfer (RAFT) radical polymerization, Polymers, 6 (2014) 846-859.
[17] E.S. Gil, S.M. Hudson, Stimuli-reponsive polymers and their bioconjugates, Progress in polymer science, 29 (2004) 1173-1222.
[18] P. Bawa, V. Pillay, Y.E. Choonara, L.C. du Toit, Stimuli-responsive polymers and their applications in drug delivery, Biomedical materials, 4 (2009) 022001.
[19] K. Sugiyama, A. Hirao, J.-C. Hsu, Y.-C. Tung, W.-C. Chen, Living Anionic Polymerization of Styrene Derivatives para-Substituted with π-Conjugated Oligo (fluorene) Moieties, Macromolecules, 42 (2009) 4053-4062.
[20] P.-H. Lin, W.-Y. Lee, W.-C. Wu, W.-C. Chen, Synthesis, properties, and electrical memory characteristics of new diblock copolymers of polystyrene-block-poly (styrene-pyrene), Polymer bulletin, 69 (2012) 29-47.
[21] K. Onimura, M. Matsushima, M. Nakamura, T. Tominaga, K. Yamabuki, T. Oishi, Synthesis and fluorescent properties of model compounds for conjugated polymer containing maleimide units at the main chain, Journal of Polymer Science Part A: Polymer Chemistry, 49 (2011) 3550-3558.
[22] W. Huang, W. Wu, A novel polymer chemodosimeter for the detection of mercury ions: Synthesis and fluorescence “turn‐on” responses of fluorene‐based conjugated polymer with reactive pendent N, N‐diethyl‐2‐(4‐phenoxy)‐thioacetamide, Journal of Applied Polymer Science, 124 (2012) 2055-2061.
[23] H.J. Jiang, Z.Q. Gao, X.Y. Deng, R.F. Chen, W. Huang, Two photoluminescent polymers based on fluorene and 2, 4, 6‐triphenyl pyridine: Synthesis and electroluminescence, Journal of Applied Polymer Science, 124 (2012) 3921-3929.
[24] M. Ichikawa, Y. Tanaka, N. Suganuma, T. Koyama, Y. Taniguchi, Low-threshold photopumped distributed feedback plastic laser made by replica molding, Japanese journal of applied physics, 42 (2003) 5590.
[25] N. Greenham, S. Moratti, D. Bradley, R. Friend, A. Holmes, Efficient light-emitting diodes based on polymers with high electron affinities, (1993).
[26] L. Dai, Intelligent Macromolecules for Smart Devices: From Materials Synthesis to Device Applications Springer; 1st Edition. edition2004.
[27] Y. Zhao, Rational design of light-controllable polymer micelles, The Chemical Record, 7 (2007) 286-294.
[28] G. Pasparakis, T. Manouras, P. Argitis, M. Vamvakaki, Photodegradable Polymers for Biotechnological Applications, Macromolecular Rapid Communications, 33 (2012) 183-198.
[29] J. Jiang, X. Tong, D. Morris, Y. Zhao, Toward photocontrolled release using light-dissociable block copolymer micelles, Macromolecules, 39 (2006) 4633-4640.
[30] K.G. Yager, C.J. Barrett, Novel photo-switching using azobenzene functional materials, Journal of Photochemistry and Photobiology A: Chemistry, 182 (2006) 250-261.
[31] X. Jiang, C.A. Lavender, J.W. Woodcock, B. Zhao, Multiple micellization and dissociation transitions of thermo-and light-sensitive poly (ethylene oxide)-b-poly (ethoxytri (ethylene glycol) acrylate-co-o-nitrobenzyl acrylate) in water, Macromolecules, 41 (2008) 2632-2643.
[32] C.G. Bochet, Photolabile protecting groups and linkers, Journal of the Chemical Society, Perkin Transactions 1, (2002) 125-142.
[33] O. Bertrand, J.-M. Schumers, C. Kuppan, J. Marchand-Brynaert, C.-A. Fustin, J.-F. Gohy, Photo-induced micellization of block copolymers bearing 4, 5-dimethoxy-2-nitrobenzyl side groups, Soft Matter, 7 (2011) 6891-6896.
[34] H. Zhao, W. Gu, E. Sterner, T.P. Russell, E.B. Coughlin, P. Theato, Highly ordered nanoporous thin films from photocleavable block copolymers, Macromolecules, 44 (2011) 6433-6440.
[35] Y. Zhao, Photocontrollable block copolymer micelles: what can we control?, Journal of Materials Chemistry, 19 (2009) 4887-4895.
[36] H. Tian, Z. Tang, X. Zhuang, X. Chen, X. Jing, Biodegradable synthetic polymers: Preparation, functionalization and biomedical application, Progress in Polymer Science, 37 (2012) 237-280.
[37] Y.-M. Sun, T.-L. Huang, Pervaporation of ethanol-water mixtures through temperature-sensitive poly (vinyl alcohol-< i> g</i>-< i> N</i>-isopropyacrylamide) membranes, Journal of membrane science, 110 (1996) 211-218.
[38] E. Clark, J. Lipson, LCST and UCST behavior in polymer solutions and blends, Polymer, 53 (2012) 536-545.
[39] R. Liu, M. Fraylich, B.R. Saunders, Thermoresponsive copolymers: from fundamental studies to applications, Colloid and Polymer Science, 287 (2009) 627-643.
[40] Y. Ono, T. Shikata, Hydration and dynamic behavior of poly (N-isopropylacrylamide) s in aqueous solution: A sharp phase transition at the lower critical solution temperature, Journal of the American Chemical Society, 128 (2006) 10030-10031.
[41] H. Schild, Poly (< i> N</i>-isopropylacrylamide): experiment, theory and application, Progress in polymer science, 17 (1992) 163-249.
[42] S.H. Yuk, S.H. Cho, S.H. Lee, pH/temperature-responsive polymer composed of poly ((N, N-dimethylamino) ethyl methacrylate-co-ethylacrylamide), Macromolecules, 30 (1997) 6856-6859.
[43] I. Idziak, D. Avoce, D. Lessard, D. Gravel, X. Zhu, Thermosensitivity of aqueous solutions of poly (N, N-diethylacrylamide), Macromolecules, 32 (1999) 1260-1263.
[44] J. Persson, H.-O. Johansson, I. Galaev, B. Mattiasson, F. Tjerneld, Aqueous polymer two-phase systems formed by new thermoseparating polymers, Bioseparation, 9 (2000) 105-116.
[45] K. Van Durme, S. Verbrugghe, F.E. Du Prez, B. Van Mele, Influence of poly (ethylene oxide) grafts on kinetics of LCST behavior in aqueous poly (N-vinylcaprolactam) solutions and networks studied by modulated temperature DSC, Macromolecules, 37 (2004) 1054-1061.
[46] S. Zheng, S. Shi, Y. Xia, Q. Wu, Z. Su, X. Chen, Study on micellization of poly (N‐isopropylacrylamide‐butyl acrylate) macromonomers in aqueous solution, Journal of applied polymer science, 118 (2010) 671-677.
[47] J. Chen, Z. Xie, J.W. Lam, C.C. Law, B.Z. Tang, Silole-containing polyacetylenes. Synthesis, thermal stability, light emission, nanodimensional aggregation, and restricted intramolecular rotation, Macromolecules, 36 (2003) 1108-1117.
[48] O.F.E.H.E. Photoluminescence, FOCUS REVIEWS, Chem. Asian J, 5 (2010) 1516-1531.
[49] E. Ju, X. Yang, Y. Lin, F. Pu, J. Ren, X. Qu, Exonuclease-aided amplification for label-free and fluorescence turn-on DNA detection based on aggregation-induced quenching, Chemical Communications, 48 (2012) 11662-11664.
[50] H. Tong, Y. Hong, Y. Dong, M. Häußler, J.W. Lam, Z. Li, Z. Guo, Z. Guo, B.Z. Tang, Fluorescent “light-up” bioprobes based on tetraphenylethylene derivatives with aggregation-induced emission characteristics, Chemical communications, (2006) 3705-3707.
[51] X. Xue, Y. Zhao, L. Dai, X. Zhang, X. Hao, C. Zhang, S. Huo, J. Liu, C. Liu, A. Kumar, Spatiotemporal Drug Release Visualized through a Drug Delivery System with Tunable Aggregation‐Induced Emission, Advanced Materials, (2013).
[52] J. Liu, J.W. Lam, B.Z. Tang, Aggregation-induced emission of silole molecules and polymers: fundamental and applications, Journal of Inorganic and Organometallic Polymers and Materials, 19 (2009) 249-285.
[53] W.Z. Yuan, P. Lu, S. Chen, J.W. Lam, Z. Wang, Y. Liu, H.S. Kwok, Y. Ma, B.Z. Tang, Changing the Behavior of Chromophores from Aggregation‐Caused Quenching to Aggregation‐Induced Emission: Development of Highly Efficient Light Emitters in the Solid State, Advanced Materials, 22 (2010) 2159-2163.
[54] J. Chen, C.C. Law, J.W. Lam, Y. Dong, S.M. Lo, I.D. Williams, D. Zhu, B.Z. Tang, Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1, 1-substituted 2, 3, 4, 5-tetraphenylsiloles, Chemistry of materials, 15 (2003) 1535-1546.
[55] K.E. Sapsford, L. Berti, I.L. Medintz, Materials for fluorescence resonance energy transfer analysis: beyond traditional donor–acceptor combinations, Angewandte Chemie International Edition, 45 (2006) 4562-4589.
[56] S.A. Hussain, An Introduction to Fluorescence Resonance Energy Transfer (FRET), arXiv preprint arXiv:0908.1815, (2009).
[57] N. Nishiyama, K. Kataoka, Nanostructured devices based on block copolymer assemblies for drug delivery: designing structures for enhanced drug function, Polymer Therapeutics II, Springer2006, pp. 67-101.
[58] Y. Xiao, H. Hong, A. Javadi, J.W. Engle, W. Xu, Y. Yang, Y. Zhang, T.E. Barnhart, W. Cai, S. Gong, Multifunctional unimolecular micelles for cancer-targeted drug delivery and positron emission tomography imaging, Biomaterials, 33 (2012) 3071-3082.
[59] S. Ganta, H. Devalapally, A. Shahiwala, M. Amiji, A review of stimuli-responsive nanocarriers for drug and gene delivery, Journal of controlled release : official journal of the Controlled Release Society, 126 (2008) 187-204.
[60] S.K. Hira, A.K. Mishra, B. Ray, P.P. Manna, Targeted Delivery of Doxorubicin-Loaded Poly (ε-caprolactone)-b-Poly (N-vinylpyrrolidone) Micelles Enhances Antitumor Effect in Lymphoma, PloS one, 9 (2014) e94309.
[61] X.-X. Ke, L. Wang, J. Xu, B. Du, Y. Tu, Z. Fan, Effect of local chain deformability on the temperature-induced morphological transitions of polystyrene-b-poly (N-isopropylacrylamide) micelles in aqueous solution, Soft Matter, (2014).
[62] S.B. La, T. Okano, K. Kataoka, Preparation and characterization of the micelle‐forming polymeric drug indomethacin‐incorporated poly (ethylene oxide)–poly (β‐benzyl L‐aspartate) block copolymer micelles, Journal of pharmaceutical sciences, 85 (1996) 85-90.
[63] T. Jiang, Y. Li, Y. Lv, Y. Cheng, F. He, R. Zhuo, Biodegradable amphiphilic block-graft copolymers based on methoxy poly (ethylene glycol)-b-(polycarbonates-g-polycarbonates) for controlled release of doxorubicin, Journal of Materials Science: Materials in Medicine, 25 (2014) 131-139.
[64] J. Fang, H. Nakamura, H. Maeda, The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect, Advanced drug delivery reviews, 63 (2011) 136-151.
[65] R. Haag, Supramolecular Drug‐Delivery Systems Based on Polymeric Core–Shell Architectures, Angewandte Chemie International Edition, 43 (2004) 278-282.
[66] Y. Yu, S. Li, C. Leng, T. Xiong, K. Yuan, S. Yan, F. Jia, Synthesis and self-assembly behavior of thermoresponsive triblock copolymer, Polymer Science Series B, 56 (2014) 191-197.
[67] X. Wang, S. Li, Z. Wan, Z. Quan, Q. Tan, Investigation of thermo-sensitive amphiphilic micelles as drug carriers for chemotherapy in cholangiocarcinoma in vitro and vivo, International journal of pharmaceutics, (2014).
[68] B. Wang, K. Chen, R. Yang, F. Yang, J. Liu, Stimulus-responsive polymeric micelles for the light-triggered release of drugs, Carbohydrate Polymers, (2014).
[69] S. Hehir, N.R. Cameron, Recent Advances in Drug Delivery Systems based on Polypeptides Prepared from N‐Carboxyanhydrides, Polymer International, (2014).
[70] K.S. Kim, W. Park, J. Hu, Y.H. Bae, K. Na, A cancer-recognizable MRI contrast agents using pH-responsive polymeric micelle, Biomaterials, 35 (2014) 337-343.
[71] J. Liang, W.-L. Wu, X.-D. Xu, R.-X. Zhuo, X.-Z. Zhang, pH Responsive micelle self-assembled from a new amphiphilic peptide as anti-tumor drug carrier, Colloids and Surfaces B: Biointerfaces, 114 (2014) 398-403.
[72] Z. Hami, M. Amini, M. Ghazi-Khansari, S.M. Rezayat, K. Gilani, Synthesis and in vitro evaluation of a pH-sensitive PLA-PEG-Folate based polymeric micelle for controlled delivery of docetaxel, Colloids and Surfaces B: Biointerfaces, (2014).
[73] C. Zhang, S. Jin, S. Li, X. Xue, J. Liu, Y. Huang, Y. Jiang, W.-Q. Chen, G. Zou, X.-J. Liang, Imaging Intracellular Anticancer Drug Delivery by Self-Assembly Micelles with Aggregation-Induced Emission (AIE Micelles), ACS applied materials & interfaces, 6 (2014) 5212-5220.
[74] F. Hua, X. Jiang, D. Li, B. Zhao, Well‐defined thermosensitive, water‐soluble polyacrylates and polystyrenics with short pendant oligo (ethylene glycol) groups synthesized by nitroxide‐mediated radical polymerization, Journal of Polymer Science Part A: Polymer Chemistry, 44 (2006) 2454-2467.
[75] S. Cheng, P. Song, S. Yang, H. Yin, K. Han, Fluorescence and solvent-dependent phosphorescence studies of o-nitrobenzaldehyde: A combined experimental and theoretical investigation, Physical Chemistry Chemical Physics, 12 (2010) 9067-9074.