| 研究生: |
洪桂明 Hung, Kui-Ming |
|---|---|
| 論文名稱: |
探討polymerase γ抑制劑對粒線體受損造成的神經毒性 Mitochondrial dysfunction in polymerase γ inhibitor-mediated neurotoxicity |
| 指導教授: |
陳珮君
Chen, Pei-Chun 陳明晟 Calkins, Marcus J. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 核甘酸反轉錄酶抑制劑 、DNA聚合酶γ假說 、粒線體DNA 、粒線體受損 |
| 外文關鍵詞: | NRTI, polymerase γ, mtDNA, mitochondrial dysfunction, neurotoxicity |
| 相關次數: | 點閱:179 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臨床上抗愛滋病毒的藥物治療是利用合併治療的策略(俗稱雞尾酒療法),最重要的基礎藥物是核甘酸反轉錄酶抑制劑,此基礎藥物會與蛋白質酵素抑制劑或是非核甘酸酵素抑制劑共同合併治療。但是長時間服用核甘酸反轉錄酶抑制劑具有許多短期和長期使用相關的副作用,其中一種副作用是神經病變,也是促使本研究計畫展開的動機。核甘酸反轉錄酶抑制劑的毒理機轉被認為是抑制粒線體DNA聚合酶γ,影響粒線體DNA的生成,造成粒線體DNA含量減少,這個過程被認為會導致粒線體受損,又稱為DNA聚合酶γ假說。但近期越來越多在其他細胞中的研究質疑核甘酸反轉錄酶抑制劑導致的粒線體受損並不需要粒線體DNA含量下降。但在神經細胞中還未被驗證。因此我們利用小鼠初代皮質神經細胞建立一套系統去檢測毒物對粒線體不同功能的影響,包含粒線體生成、粒線體DNA含量、氧化磷酸化、型態、移動和粒線體未折疊蛋白反應。首先我們使用已知道會抑制粒線體DNA聚合酶γ的溴化乙錠來建立系統。結果顯示溴化乙錠會損害粒線體的生成、移動、氧化磷酸化和粒線體未折疊反應並增加粒線體的分裂,但並不影響粒線體DNA含量。接著,我們使用6種不同的核甘酸反轉錄酶抑制劑,這些抑制劑對於粒線體DNA聚合酶γ的抑制和造成神經毒性的能力皆有不同。結果發現只有具有抑制粒線體DNA聚合酶γ 能力強的ddC 和ddI此兩種藥物,會損壞粒線體DNA生成,造成粒線體DNA含量下降。更進一步,只有ddC會些微的影響氧化磷酸化。另外,觀察到AZT和d4T雖然沒有抑制粒線體DNA的合成或減少粒線體DNA含量,但卻輕微影響粒線體的型態和減少粒線體的移動。綜合以上結果,我們知道不同的核甘酸反轉錄酶抑制劑會造成不同層面的粒線體受損並在初代皮質神經細胞所造成的粒線體毒性是不需要粒線體DNA含量下降。
The cornerstone of current HIV treatment is nucleoside reverse transcriptase inhibitors (NRTIs). Patients who receive long term treatment with NRTIs often develop severe side effects, including neuropathy. The putative toxic mechanism is the inhibition of mitochondrial DNA polymerase γ (pol γ), which impairs mitochondrial DNA (mtDNA) synthesis and leads to mtDNA depletion. This process is expected to cause mitochondrial dysfunction and is referred to as the ‘pol γ hypothesis.’ However recent studies have called into question whether NRTI damage to mitochondria may be independent of mtDNA depletion. This has not been tested in neurons. Therefore, we established a panel of endpoints in murine primary cortical neurons to systematically investigate mitochondrial regulation during toxicity including biogenesis, mtDNA synthesis, mtDNA content, oxidative phosphorylation, morphology, motility, and the mitochondrial unfolded protein response (mtUPR). First, we applied this analysis to ethidium bromide (EtBr), which is a prototypical inhibitor of pol γ. Our results showed that EtBr impaired mitochondrial biogenesis, mtUPR, motility and oxidative phosphorylation, but increased mitochondrial fission and did not affect mtDNA content. After validating the methods, we investigated the effects of six different NRTIs which have variable pol γ inhibitory activity and neurotoxicity. Among the NRTIs that we tested, only strong pol γ inhibitors, ddC and ddI, attenuated mtDNA synthesis and led to decreased mtDNA content. Further, only ddC decreased mtDNA transcription and produced a mild reduction in oxidative phosphorylation. Minor effects on motility and morphology were observed after AZT and d4T treatment without mtDNA depletion or inhibition of mtDNA synthesis. Overall, the results suggest that NRTIs induce distinct profiles of mitochondrial dysfunction in neurons which likely reflect multiple mechanisms of toxicity. Furthermore, the NRTI-induced mitochondrial toxicity in primary cortical neurons is largely independent of mtDNA depletion.
1. Schwarz, T.L., Mitochondrial trafficking in neurons. Cold Spring Harb Perspect Biol, 2013. 5(6).
2. Leitao-Rocha, A., et al., Trends in Mitochondrial Therapeutics for Neurological Disease. Curr Med Chem, 2015. 22(20): p. 2458-67.
3. Scheibye-Knudsen, M., et al., Protecting the mitochondrial powerhouse. Trends Cell Biol, 2015. 25(3): p. 158-70.
4. Carelli, V. and D.C. Chan, Mitochondrial DNA: impacting central and peripheral nervous systems. Neuron, 2014. 84(6): p. 1126-42.
5. Gleyzer, N., K. Vercauteren, and R.C. Scarpulla, Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol, 2005. 25(4): p. 1354-66.
6. Kelly, D.P. and R.C. Scarpulla, Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev, 2004. 18(4): p. 357-68.
7. Scarpulla, R.C., Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev, 2008. 88(2): p. 611-38.
8. Johri, A., A. Chandra, and M.F. Beal, PGC-1alpha, mitochondrial dysfunction, and Huntington's disease. Free Radic Biol Med, 2013. 62: p. 37-46.
9. Qin, W., et al., PGC-1alpha expression decreases in the Alzheimer disease brain as a function of dementia. Arch Neurol, 2009. 66(3): p. 352-61.
10. Tuppen, H.A., et al., Mitochondrial DNA mutations and human disease. Biochim Biophys Acta, 2010. 1797(2): p. 113-28.
11. Chomyn, A., et al., MELAS mutation in mtDNA binding site for transcription termination factor causes defects in protein synthesis and in respiration but no change in levels of upstream and downstream mature transcripts. Proc Natl Acad Sci U S A, 1992. 89(10): p. 4221-5.
12. Rossignol, R., et al., Mitochondrial threshold effects. Biochem J, 2003. 370(Pt 3): p. 751-62.
13. Huttemann, M., et al., Regulation of mitochondrial oxidative phosphorylation through cell signaling. Biochim Biophys Acta, 2007. 1773(12): p. 1701-20.
14. Tretter, L., I. Sipos, and V. Adam-Vizi, Initiation of neuronal damage by complex I deficiency and oxidative stress in Parkinson's disease. Neurochem Res, 2004. 29(3): p. 569-77.
15. Liot, G., et al., Complex II inhibition by 3-NP causes mitochondrial fragmentation and neuronal cell death via an NMDA- and ROS-dependent pathway. Cell Death Differ, 2009. 16(6): p. 899-909.
16. Benchoua, A., et al., Involvement of mitochondrial complex II defects in neuronal death produced by N-terminus fragment of mutated huntingtin. Mol Biol Cell, 2006. 17(4): p. 1652-63.
17. Saxton, W.M. and P.J. Hollenbeck, The axonal transport of mitochondria. J Cell Sci, 2012. 125(Pt 9): p. 2095-104.
18. Smirnova, E., et al., Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell, 2001. 12(8): p. 2245-56.
19. van der Bliek, A.M., Q. Shen, and S. Kawajiri, Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol, 2013. 5(6).
20. Chen, H., et al., Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol, 2003. 160(2): p. 189-200.
21. Cipolat, S., et al., OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A, 2004. 101(45): p. 15927-32.
22. Chen, H., J.M. McCaffery, and D.C. Chan, Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell, 2007. 130(3): p. 548-62.
23. Barsoum, M.J., et al., Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J, 2006. 25(16): p. 3900-11.
24. Knott, A.B. and E. Bossy-Wetzel, Impairing the mitochondrial fission and fusion balance: a new mechanism of neurodegeneration. Ann N Y Acad Sci, 2008. 1147: p. 283-92.
25. Jin, S.M. and R.J. Youle, PINK1- and Parkin-mediated mitophagy at a glance. J Cell Sci, 2012. 125(Pt 4): p. 795-9.
26. Gegg, M.E. and A.H. Schapira, PINK1-parkin-dependent mitophagy involves ubiquitination of mitofusins 1 and 2: Implications for Parkinson disease pathogenesis. Autophagy, 2011. 7(2): p. 243-5.
27. Pickrell, A.M. and R.J. Youle, The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron, 2015. 85(2): p. 257-73.
28. Deas, E., N.W. Wood, and H. Plun-Favreau, Mitophagy and Parkinson's disease: the PINK1-parkin link. Biochim Biophys Acta, 2011. 1813(4): p. 623-33.
29. Jovaisaite, V., L. Mouchiroud, and J. Auwerx, The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. J Exp Biol, 2014. 217(Pt 1): p. 137-43.
30. Bernales, S., M.M. Soto, and E. McCullagh, Unfolded protein stress in the endoplasmic reticulum and mitochondria: a role in neurodegeneration. Front Aging Neurosci, 2012. 4: p. 5.
31. Jensen, M.B. and H. Jasper, Mitochondrial proteostasis in the control of aging and longevity. Cell Metab, 2014. 20(2): p. 214-25.
32. Yoneda, T., et al., Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J Cell Sci, 2004. 117(Pt 18): p. 4055-66.
33. Nargund, A.M., et al., Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPR(mt). Mol Cell, 2015. 58(1): p. 123-33.
34. Pellegrino, M.W., A.M. Nargund, and C.M. Haynes, Signaling the mitochondrial unfolded protein response. Biochim Biophys Acta, 2013. 1833(2): p. 410-6.
35. Durieux, J., S. Wolff, and A. Dillin, The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell, 2011. 144(1): p. 79-91.
36. Pomerantz, R.J. and D.L. Horn, Twenty years of therapy for HIV-1 infection. Nat Med, 2003. 9(7): p. 867-73.
37. Apostolova, N., A. Blas-Garcia, and J.V. Esplugues, Mitochondrial interference by anti-HIV drugs: mechanisms beyond Pol-gamma inhibition. Trends Pharmacol Sci, 2011. 32(12): p. 715-25.
38. Graziewicz, M.A., M.J. Longley, and W.C. Copeland, DNA polymerase gamma in mitochondrial DNA replication and repair. Chem Rev, 2006. 106(2): p. 383-405.
39. Lim, S.E., M.J. Longley, and W.C. Copeland, The mitochondrial p55 accessory subunit of human DNA polymerase gamma enhances DNA binding, promotes processive DNA synthesis, and confers N-ethylmaleimide resistance. J Biol Chem, 1999. 274(53): p. 38197-203.
40. Lewis, W. and M.C. Dalakas, Mitochondrial toxicity of antiviral drugs. Nat Med, 1995. 1(5): p. 417-22.
41. Skuta, G., et al., Molecular mechanism of the short-term cardiotoxicity caused by 2',3'-dideoxycytidine (ddC): modulation of reactive oxygen species levels and ADP-ribosylation reactions. Biochem Pharmacol, 1999. 58(12): p. 1915-25.
42. Igoudjil, A., et al., High concentrations of stavudine impair fatty acid oxidation without depleting mitochondrial DNA in cultured rat hepatocytes. Toxicol In Vitro, 2008. 22(4): p. 887-98.
43. Calkins, M.J., et al., Protection from mitochondrial complex II inhibition in vitro and in vivo by Nrf2-mediated transcription. Proc Natl Acad Sci U S A, 2005. 102(1): p. 244-9.
44. Calkins, M.J., et al., Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer's disease. Hum Mol Genet, 2011. 20(23): p. 4515-29.
45. Lentz, S.I., et al., Mitochondrial DNA (mtDNA) biogenesis: visualization and duel incorporation of BrdU and EdU into newly synthesized mtDNA in vitro. J Histochem Cytochem, 2010. 58(2): p. 207-18.
46. Calkins, M.J. and P.H. Reddy, Assessment of newly synthesized mitochondrial DNA using BrdU labeling in primary neurons from Alzheimer's disease mice: Implications for impaired mitochondrial biogenesis and synaptic damage. Biochim Biophys Acta, 2011. 1812(9): p. 1182-9.
47. Mallon, P.W., et al., In vivo, nucleoside reverse-transcriptase inhibitors alter expression of both mitochondrial and lipid metabolism genes in the absence of depletion of mitochondrial DNA. J Infect Dis, 2005. 191(10): p. 1686-96.
48. Herlitz, L.C., et al., Tenofovir nephrotoxicity: acute tubular necrosis with distinctive clinical, pathological, and mitochondrial abnormalities. Kidney Int, 2010. 78(11): p. 1171-7.
49. Kohler, J.J., et al., Tenofovir renal toxicity targets mitochondria of renal proximal tubules. Lab Invest, 2009. 89(5): p. 513-9.
50. Ramamoorthy, H., P. Abraham, and B. Isaac, Mitochondrial dysfunction and electron transport chain complex defect in a rat model of tenofovir disoproxil fumarate nephrotoxicity. J Biochem Mol Toxicol, 2014. 28(6): p. 246-55.
51. Lebrecht, D., et al., Mitochondrial tubulopathy in tenofovir disoproxil fumarate-treated rats. J Acquir Immune Defic Syndr, 2009. 51(3): p. 258-63.
52. Margolis, A.M., et al., A review of the toxicity of HIV medications. J Med Toxicol, 2014. 10(1): p. 26-39.
53. Cazzalini, O., et al., Early effects of AZT on mitochondrial functions in the absence of mitochondrial DNA depletion in rat myotubes. Biochem Pharmacol, 2001. 62(7): p. 893-902.
54. Valenti, D., M. Barile, and S. Passarella, AZT inhibition of the ADP/ATP antiport in isolated rat heart mitochondria. Int J Mol Med, 2000. 6(1): p. 93-6.
55. Barile, M., et al., 3'-Azido-3'-deoxythmidine uptake into isolated rat liver mitochondria and impairment of ADP/ATP translocator. Biochem Pharmacol, 1997. 53(7): p. 913-20.
56. Durham, S.E., et al., Mitochondrial DNA copy number threshold in mtDNA depletion myopathy. Neurology, 2005. 65(3): p. 453-5.
校內:2021-02-04公開