| 研究生: |
沈岳霖 Shen, Yue-Ling |
|---|---|
| 論文名稱: |
β糊蛋白與碳60之交互作用 Interactions between amyloid beta and fullerene C60 |
| 指導教授: |
黃吉川
Hwang, Chi-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 奈米毒理學 、C60 、阿茲海默症 |
| 外文關鍵詞: | Nanotoxicology, C60 |
| 相關次數: | 點閱:56 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米毒理學是目前相當嶄新的研究課題,我們都知曉科技進步易伴隨產生自然汙染,因此開發新一代科學技術也勢必探討它背後所帶來的負面影響。目前C60廣泛應用在奈米技術上,許多研究表示C60並不會毒害人體,因而提出C60能夠當作藥物或引子的想法。而以C60來治療阿茲海默症是目前熱門的研究,其中β糊蛋白的聚集為阿茲海默症的主因,故本研究乃探討不同數量(1-5條)的β糊蛋白分子與一顆C60之交互作用,分析其聚集的差異性。結果發現形成二聚體以下的β糊蛋白聚集能力有明顯降低的趨勢。
Nanotoxicology is a brand-new topic in the scientific research area for the time being. It is well-known that the development of technology always accompanies many kinds of pollution in the world, thus it is necessary to investigate the possibility of negative impact on our environment under the development of new generation technology. Recently, the structure of C60 has been extensively used in nano technology. Many studies reported that the C60 structure is not harmful to the physical body of human being, and the idea of a new medicine composed of C60 was proposed. One of the interesting studies is the cure of C60 on Alzheimer's disease, in which the aggregate of β-amyloids is the primary cause of the disease. Herein we presents a study on the interaction between the β-amyloids and a C60 structure. The effects of β-amyloid aggregate on Alzheimer's disease are discussed. It was found that the C60 structure would significantly reduce the aggregate ability of β-amyloid dimer or less.
1.Lan Ma-Hock, Silke Burkhardt, Volker Strauss, Armin O. Gamer, Karin Wiench, Bennard van Ravenzwaay, and Robert Landsiedel, 2009. Development of a Short-Term Inhalation Test in the Rat Using Nano-Titanium Dioxide as a Model Substance, INHALATION TOXICOLOGY, 21, 102-118.
2.Marinella Farré & Krisztina Gajda-Schrantz & Lina Kantiani & Damià Barceló, Ecotoxicity and analysis of nanomaterials in the aquatic Environment, Anal Bioanal Chem 393:81–95, 2009.
3.Parnian Ghafari, Christine H. St-Denis, Mary E. Power, Xu Jin, Veronica Tsou, Himadri S. Mandal, Niels C. Bols and Xiaowu (Shirley) Tang, Nature Nanotechnology advance online publication 11 May 2008, DOI:10.1038/nnano. 2008.109.
4.ALAN J. KENNEDY, JONAS C. GUNTER, MARK A. CHAPPELL, JENNIFER D. GOSS,§ MATTHEW S. HULL,I ROBERT A. KIRGAN, and JEFFERY A. STEEVENS, INFLUENCE OF NANOTUBE PREPARATION IN AQUATIC BIOASSAYS, Environmental Toxicology and Chemistry, Vol:28(9) 1930–1938, 2009.
5.N.A. Monteiro-Riviere, A.O. Inman, L.W. Zhang, Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line, Toxicology and Applied Pharmacology, 234 222–235, 2009.
6.張菡 張惠華。體內殘留的奈米粒子。科學發展 2008 年 11 月 431 期。
7.Glenner, G. G., Wong, C. W., Alzheimers's disease : initial report of the purification and characteriztion of a novel cerebrovascular amyloid protein, Biochem. Bioph. Res. Co., 120: 885-890, 1984.
8.Hardy, J., Selkoe, D, J., The amyloid hypothesis of Alzheimer's disease : progress and problems on the road to therapeutics, Science, 297: 1-12, 2006.
9.Vanessa de Jesus R. Dc Paula, Fabiana Meira Guimarāes, Breno Satler Diniz, Orestes Vicente Forlenza, Neurobioloical pathways to Alzheimer's disease : amyloid-beta, TAU protein or both?, Dementia & Neuropsychologia, 3(3): 188-194, 2009.
10.Marina D. Kirkitadze, Anna Kowalska, Molecular mechanisms initiating amyloid β-fibril formation in Alzheimer;s disease, Acte Biochimica Polonica, 52(2): 417-423, 2005.
11.Mingeot-Leclercq MP., Lins L., Bensliman M., Van Bambeke F., Membrane destabilization induced by beta-amyloid peptide 29-42: importance of the amino-terminus, Chemistry and Physics of Lipids, 120(1-2): 57-74, 2002.
12.Xu Y., Shen J., Luo X., Zhu W., Chen K., Ma J., Jiang H., Conformational transition of amyloid β-peptide, Proc. Natl. Acad. Sci., 102: 5403-5407, 2005.
13.Charles H. Davis, Max L. Berkowitz, Interaction between amyloid-β(1-42) Peptide and Phospholipid Bilayers: A Molecular Dynamics Study, Biophysical Journal, 96: 785-797, 2009.
14.Simona Tomaselli, Veronica Esposito, Paolo Vangone, Nico A. J. Van Nuland, Alexandre M. J. J. Bonvin, Remo Guerrini, Teodorico Tencredi, Piero A. Temussi, and Delia Picone, The α-to-β conformational transition of Alzheimer's Aβ(1-42) peptide in aqueous media is reversible : A step by step conformational analysis suggests the location of β conformation seeding, ChemBioChem, 7: 257-267, 2006.
15.Isabella Daidone, Fabio Simona, Danilo Roccatano, Ricardo A. Broglia, Guido Tiana, Giorgio Colombo, Alfredo Di Nola, β-hairpin conformation of fibrillogenic peptides: structure and α-β transition mechanism revealed by molecular dynamics simulations, PROTEINS: Structure, Function, and Bioinformatics, 57: 198-204, 2004.
16.Lambert MP., Barlow AK., Chromy BA., Edwards C., Diffusible, nonfibrillar ligands derived from Abetal 1-42 are potent central nervous system neurotoxins, Proceedings of the National Academy of Sciences U. S. A., 95(11): 6448-53, 1998.
17.Hoshi M,. Sato M., Matsumoto S., Spherical aggregates of beta-amyloid(amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3beta, Proceedings of the National Academy of Sciences U. S. A., 100(11): 6370-5, 2003.
18.Murakmi K., Iire K., Morimoto A., Ohigashi H., Shindo M., Nagao M., Shimizu T., Shirasawa T., Synthesis, aggregation, neurotoxicity, and secondary structure of various Aβ(1-42) mutants of familial Alzheimer's disease at positions 21-23, Biochem. Bioph. Res. Co., 294: 5-10, 2002.
19.Irie K., Murakami K., Masuda Y., Morimoto A., Ohigashi R., Takegoshi K., Nagao M., Shimizu T., Shirasawa Structure of β-amyloid fibrils and its relevance to their neurotoxicity : Implication for pathogenesis of Alzheimer's disease, J. Biosci. Bioeng, 99: 437-447, 2005.
20.Thorsten Lűhrs, Christiane Ritter, Marc Adrian, Dominque Riek-Loher, Bernd Bohrmann, Heinz Dőbeli, David Schubert, Roland Riek, 3D structure of Alzheimer's amyloid-β(1-42) fibrils, PNAS, 102(48): 17342-17347, 2005.
21.Sandra Chimon, Medhat A Shaibat, Christopher R Jones, Diana C Calero, Buzulagu Aizezi & Yoshitaka Ishii, Evidence of fibril-like β-sheet structures in a neurotoxic amyloid intermediate of Alzheimer's β-amyloid, nature structural & molecular biology,14(12), 2007.
22.Riccardo Pellarin, Enrico Guarnera, Amedeo Caflisch, Pathways and Intermediates of Amyloid Fibril Formation, J. Mol. Biol., 374: 917-924, 2007.
23.Jun Wang, Chunhu Tan, Hai-Feng Chen, Ray Luo, All-atom comuter simulations of amyloid fibrils disaggregation, Biophysical Journal, 95: 5037-5047, 2008.
24.Gerald P. Gellermann, Helga Byrnes, Andreas Striebinger, Kathrin Ullrich, Reinhold Mueller, Heinz Hillen, Stefan Barghorn, Aβ-globulomers are formed independtly of fibril pathway, Neurobiology of Disease, 30: 212-220, 2008.
25.Andrij Baumketner, Summer L. Bernstein, Thomas Wyttenbach, Gal Bitan, David B. Teplow, Michael T. Bowers, Joan-emma Shea, Amyloid β-protein monomer structure : A computational and experimental study, Protein Science, 15: 420-428, 2006.
26.Jian-Hua Zhao, Hsuan-Liang Liu, Yi-Fan Liu, Hsin-Yi Lin, Hsu-Wei Fang, Yih Ho, Wei-Bor Tsai, Molecular dynamics simulations to investigate the aggregation behaviors of the Aβ(17-42) oligomers, Journal of Biomolecular Structure & Dynamics, 26(4): 0739-1102, 2009.
27.林俊茂, 李啟鳴, Fullerene derivatives protect N2a cells against beta-amyloid induced toxicity through intensified autophagy, 2008.
28.Lindahl E., Hess B., Van Der Spoel D., Gromacs 3.0: A package for molecular simulation and trajectory analysis, Journal of Molecular Modeling, 7: 306-317, 2001.
29.Schoenberg BS, Kokmen E., Okazaki H., Alzheimer's disease and other dememting illnesses in a defined United States population: incidence rates and clinical features, Annals of Neurology, 22(6): 724-9, 1987.
30.gmx-user:
31.Berendsen JC., Postma PM., Gunsteren WF., Hermans J., Interaction moleds for water in relation to protein hydration, Intermolecular Forces, pp.331-342, 1981.
32.Kabsch W., Sander C., Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, 22(12): 2577-637, 1983.
33.科學人雜誌, 86, 2002ighton, PROTEINS : Structures and Molecular Properties, W. H. Freeman and Company, 1993.
34.Thomas E. Cre
35.Alan G. Walton, Polypeptides and protein structure, Elsevier New York, 1981.
36.Christopher K. Mathews, K. E. Van Holde, Biochemistry, Cummings Pub. Co., Calif., 1990.
37.Cruz L., Urbanc B., Borreguero JM., Lazo ND., Solvent and mutation effects on the nucleation of amyloid beta-protein folding, Proceedings of the National Academy of Sciences U.S.A., 102(51): 18258-63, 2005.
38.Teleman, O., Jonsson, B. & Engstrom, S., Amolecular dynamics simulation of a water model with intermolecular degrees of freedom, Mol. Phys., 60(1): 193-203, 1987.
39.C. Wei, D. Srivastava, Nanomechanics of carbon nanocones, Nanotechnology, 18: 105702, 2007.
40.S. Zhang, Z. Yao, S. Zhao, E. Zhang, Buckling and competition of energy and entropy lead conformation of single-walled carbon nanocones, Applied Physics Letters, 89: 131923, 2006.
41.M. P. Allen and D. J. Tildesley, Compter simulation of Liquids, Oxford, 1991.
42.D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic Press, 1996.
43.D. C. Rapaport, The Art of Molecular Dynamics Simuation, Cambridge University Press, 1997.
44.J. Haile, Molecular dynamics simulation: Elementary methods, John Wiley & Sons, Inc., New York, 1997.
45.D. Papaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, London, 1997.
46.L. Verlet, Computer 'Experiment' on Classical Fluids. I. Thermodynamical properties of Lennard-Jones Molecules, Phys Rev., 159: 98-103, 1967.
47.Hockney R. W., The potential calculation and some applications, Methods in Computational Physics, 9: 136-211, 1970.
48.C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, 1971.
49.李弘謙, 羅嘉琳, 使用分布計算及平行溫度方法模擬蛋白質摺疊, 碩博士論文, 2006.
50.Jianzhong Yang, Kuan Wang,Jonathan Driver,Jianhua Yang and Andrew R. Barron, The use of fullerene substituted phenylalanine amino acid as a passport for peptides through cell membranes, 5:260-266, 2007