| 研究生: |
江欣哲 Chiang, Hsin-Che |
|---|---|
| 論文名稱: |
加添氮分子的有機發光元件之研製 Fabrication and Characterization of Organic Light-Emitting Diodes with Nitrogen Incorporation |
| 指導教授: |
方炎坤
Fang, Yean-Kuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 英文 |
| 論文頁數: | 36 |
| 中文關鍵詞: | 有激發光元件 |
| 外文關鍵詞: | OLED |
| 相關次數: | 點閱:68 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係研究利用在成長雙層結構有機發光元件中的有機層時一同通入不同壓力的氮氣來改善元件的發光特性。實驗結果顯示添加氮分子於電子傳輸層中可以將啟動電壓及操作電壓分別降到0.8及4.2伏特。然而,添加氮分子於電洞傳輸層中卻可有效的將元件的發光效率提高至27 cd/A(約原來的八倍大)。又由掃瞄式電子顯微鏡(SEM)來分析放在空氣中48小時後的元件有機層表面,吾人發現摻雜在有機層中的氮分子可以藉著防止水氣和有機材料的化學反應大大地抑制了會造成暗點現象的結晶化圓柱,進而對元件的可靠性及壽命的增進有相當的助益。
此外,吾人亦利用氧氣電漿及熱退火處理來改變ITO透明陽極的表面,並嘗試著去探討兩種不同過程於元件性能之影響。初步發現經由電漿處理後可提升電洞注入效率,而熱退火處理則會因升溫而造成的電洞注入惡化,反而平衡了注入的載子數量,得到和電洞傳輸層參雜氮分子相同的效果。
In this thesis, we improve the photoelectric characteristics of bi-layer organic light-emitting diodes (OLEDs) by introducing N2 gas into thermal chamber to co-deposit with different organic layers. Turn-on and operating voltages are successfully reduced to 0.8V and 4.2V, respectively, with the nitrogen-incorporation into Alq3 (ETL). The same process used to TPD layer (HTL) can strongly promote the electro-luminance efficiency to 27 cd/A, which is about 8 times to the value of OLED without the treatment due to the generation of hole block effect. Additionally, the N2 molecules incorporated into organic layers can avoid the reaction of moisture and organic materials thus suppressing the occurrence of destructive crystalline clusters, which will lead to the phenomenon of dark spots.
Moreover, the oxygen-plasma and O2-annealing pretreatments are employed to modify the surface of ITO anodes and to enhance the hole injection and hence the performance of our devices. O2-annealing pretreatment can induce a hole block effect to improve the balance of holes and electrons. Finally, the hole block effects generated by both O2-annealing and nitrogen incorporation are compared.
[1] P. E. Burrows, Z. Shen, “Relation between electroluminescence and current transport in organic heterojunction light-emitting devices”, J. Appl. Phys, 79 (1996) 7991
[2] Homer Antoniadis, Jeffry N. Miller, “Effects of Hole Carrier Injection and Transport in Organic Light-Emitting Diodes”, IEEE Trans. Electron Devices, 44 (1997) 1289
[3] Chengfeng Qiu, Haiying Chen, “Dependence of the Current and Power Efficiencies of Organic Light-Emitting Diode on theThickness of the Constituent Organic Layers”, IEEE Trans. Electron Devices, 48 (2001) 2131
[4] Andrei A. Shoustikov, Yujian You, Mark E. Thompson, “Electroluminescence Color Tuning by Dye Doping in Organic Light-Emitting Diodes”, IEEE Journal of Selected Topics in Quantum Electronics, 4 (1998) 3
[5] D. M. Pai, J. F. Yanus, M. Stolka, “Trap-Controlled Hopping Transport”, J. Phys. Chem, 88 (1984) 4714
[6] Brian W. D’Andrade, “High-efficiency yellow double-doped organic light-emitting diodes based on phosphor-sensitized fluorescence”, Appl. Phys. Lett, 79 (2001) 1045
[7] N. K. Patel, “High-Efficiency Organic Light-Emitting Diodes”, IEEE Journal of Selected Topics in Quantum Electronics, 8 (2002) 346
[8] F. Steuber, “Reduced operating voltage of organic electroluminescent devices by plasma treatment of the indium tin oxide anode”, Appl. Phys. Lett, 74 (1999) 3558
[9] Chimed Ganzorig, “Improved drive voltage of organic electroluminescent devices with an efficient p-type aromatic diamine hole-injection layer”, Appl. Phys. Lett, 77 (2000) 4211
[10] Fotios Papadimitrakopoulos, “Chemical and Morphological Stability of Aluminum Tris(8-Hydroxyquinoline) (Alq3): Effects in Light-Emitting Devices”, IEEE Journal of Selected Topics in Quantum Electronics, 4 (1998) 49
[11] Chimed Ganzorig, “A Lithium Carboxylate Ultrathin Film on an Aluminum Cathode for Enhanced Electron Injection in Organic Electroluminescent Devices”, Jpn. J. Appl. Phys, 38 (1999) 1348
[12] W. O. Groves, “The Effect of Nitrogen Doping on GaAsP Electroluminescent Diodes”, Appl. Phys. Lett, 19 (1971) 184
[13] J. Kido, Toshio Matsumoto, Appl. Phys. Lett, 73 (1998) 2866
[14] F. G. Celi, “Organic LED Structure with Improved Efficiency”, IEEE, (1997) 366
[15] Y. Hashimoto, N. Fujimura, “SPACE CHARGE DISTRIBUTION IN NEW FUNCTIONAL ORGANICC LAYER”, IEEE International Conference on Conduction and Breakdown in Solid Dielectrics, 1998
[16] P. E. Burrows, “Reliability and degradation of organic light emitting devices”, Appl. Phys. Lett, 65 (1994) 2922
[17] Quoc Toan Le, “Photoemission study of aluminum/tri-(8-hydroxyquinoline) aluminum and aluminum/LiF/tri-(8-hydroxyquinoline) aluminum interfaces”, J. Appl. Phys, 87 (2000) 375
[18] C. C. Wu, “Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices”, Appl. Phys. Lett, 70 (1997) 1348
[19] Hany Aziz, “Humidity-induced crystallization of tris (8-hydroxyquinoline) aluminum layers in organic light emitting devices”, Appl. Phys. Lett , 72 (1998) 756
[20] Byeong-Gyu Roh, “The Fabrication of Green Organic Light-Emitting Diode by Evaporation Process”, IEEE TENCON (1999)
[21] C. W. Tang, “Organic electroluminescent diodes”, Appl. Phys. Lett, 51 (1987 ) 913
[22] T. Wakimoto, S. Kawani, Tech. Dig. Int. Symp. Inorganic and Organic Electroluminescence, Hamamatsu, 77 (1994)