| 研究生: |
林文宇 Lin, Wen-Yu |
|---|---|
| 論文名稱: |
浸鍍與電鍍Sn之Al銲帶應用於光伏模組界面組織特性與通電機制研究 A Study on Microstructures and Electrical Mechanism of Dipping or Electroplating Sn on Aluminum Ribbon Replied to Photovoltaic Modules |
| 指導教授: |
洪飛義
Hung, Fei-Yi 呂傳盛 Lui, Truan-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 光伏模組 、介金屬化合物 、浸鍍 、電鍍 、光伏鋁帶 |
| 外文關鍵詞: | aluminum ribbon, dipping, electroplating, photovoltaic module, interface |
| 相關次數: | 點閱:117 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用化鍍和電鍍的方式,將鋁帶製作成Cu•Zn/Al之鋁帶,並利用電鍍Sn和浸鍍Sn的方式製成Sn/Cu•Zn/Al (EP)和(HD),以解決Sn-Zn合金系統應用於鋁帶存在Zn過高造成的抗氧化性差和潤濕性差之問題。有別於商用銅導帶,本實驗所選用的商用純鋁導帶亦具有良好的導電性、成本便宜和重量輕等特性。實驗利用界面微觀組織特徵與剝離力測試評估Sn/Cu•Zn/Al光伏模組之製程條件,並利用高電流模擬電子作用以觀察通電前後微觀組織演化及體電阻差異,以評估獵能工業應用性。
實驗結果顯示,光伏導帶(HD)在浸鍍Sn時電鍍Cu層會因為高溫而重熔進Sn中,使得Cu層消失但卻能成功製成Sn/Cu•Zn/Al (HD)光伏導帶。電鍍(EP)和浸鍍製程(HD)中,Sn/Ag界面皆以生成Ag3Sn方式進行接合,而在EP製程中,Sn/Cu界面以生成Cu6Sn5方式進行接合,而HD製程由於Cu層的消失則無此現象。經由72 hr兩種通電方向結果顯示,體電阻與IMCs的厚度皆會上升,且Ag方向通電模組之體電阻表現較Al方向通電模組差,因為Cu6Sn5在正極時會大量生成而造成Ag向Sn層填位致使Ag3Sn大量生成而IMCs (Intermetallic compound)量上升較多而使體電阻上升。另外HD,以Al方向通電模組能觀察到Cu層和Cu6Sn5,由於重熔在Sn層中的Cu會往負極析出堆積形成;以Ag方向通電模組雖然Cu也會往負極聚集,但是由於Sn與Ag已生成大量的Ag3Sn故在負極處無法堆積Cu層,而是以析出Cu6Sn5方式出現在Sn層中,且負極處較多。在本實驗結果得知,使用電鍍Sn的且以Al方向通電的Sn/Cu•Zn/Al (EP)光伏模組有較佳的通電效率。
The interfacial microstructures, peeling force, and series resistance of photovoltaic (PV) Solder Aluminum ribbon(Cu・Zn/Al), prepared by two different methods: Dipping Sn method and electroplating Sn method, forming Sn/Cu・Zn/Al (HD) and Sn/Cu・Zn/Al (EP). The result showed that both (EP) and (HD) form Ag3Sn at the solder/Ag interface but Cu6Sn5 at solder/Al interface can only be observed in (EP). After 72 hr current test, Cu6Sn5 at solder/Al interface can be observed in (HD) with Al direction module but not with Ag direction module because Cu will move toward cathode. Volume resistance of both (EP) and (HD) with both Al direction and Ag direction module increased, however, the volume resistance of Ag direction module is higher than Al direction module due to the over growth of IMCs. (EP) has the lower resistance due to the lower thickness of Sn which forms fewer IMCs. To sum up, choosing Sn/Cu・Zn/Al (EP) with Al direction module is the better way.
[1] Schindler, S., & Wiese, S. "Investigation of wettability and interface reactions of Sn-Pb, Sn-Cu, Sn-Ag and Sn-Ag-Cu solders for solar cell interconnections." Electronic System-Integration Technology Conference (ESTC), 2010 3rd. IEEE, (2010): pp. 1-5.
[2] Wiese, S., Meier, R., Kraemer, F., & Bagdahn, J. "Constitutive behaviour of copper ribbons used in solar cell assembly processes." Thermal, Mechanical and Multi-Physics simulation and Experiments in Microelectronics and Microsystems, EuroSimE 2009. 10th International Conference on. IEEE, (2009): pp. 1-8.
[3] Cuddalorepatta, G., Dasgupta, A., Sealing, S., Moyer, J., Tolliver, T., & Loman, J. "Durability of Pb‐free solder between copper interconnect and silicon in photovoltaic cells." Progress in Photovoltaics: Research and Applications 18.3 (2010): pp.168-182.
[4] Zoran Miric, A., & Grusd, A. "Lead-free alloys." Soldering & Surface Mount Technology 10.1 (1998): pp. 19-25.
[5] Tian, Y., Zhang, Q. M., & Li, Z. Q. "Electrical transport properties of Ag 3 Sn compound." Solid State Communications 151.20 (2011): pp. 1496-1499.
[6] Frear, D. R., Burchett, S. N., Morgan, H. S., & Lau, J. H. Mechanics of solder alloy interconnects. Springer Science & Business Media, (1994).
[7] Yoon, J. W., & Jung, S. B. "Interfacial reactions between Sn–0.4 Cu solder and Cu substrate with or without ENIG plating layer during reflow reaction." Journal of alloys and compounds 396.1 (2005): pp. 122-127.
[8] 林奕安, "鋅基高溫無鉛銲錫合金開發及其性質之研究." 成功大學材料科學及工程學系學位論文 (2009): 1-104頁
[9] 黃帝榕, "Sn-xZn/Al 光伏模組接合界面組織特性與通電機制研究." 成功大學材料科學及工程學系學位論文 (2014): 1-65頁
[10] Vianco, Paul T., and Darrel R. Frear. "Issues in the replacement of lead-bearing solders." JOM 45.7 (1993): pp. 14-19.
[11] Trumble, Bill. "Get the lead out![lead free solder]." IEEE spectrum 35.5 (1998): pp. 55-60.
[12] Wu, C. M. L., Yu, D. Q., Law, C. M. T., & Wang, L. "Properties of lead-free solder alloys with rare earth element additions." Materials Science and Engineering: R: Reports 44.1 (2004): pp. 1-44.
[13] Frear, D. R., Jang, J. W., Lin, J. K., & Zhang, C. "Pb-free solders for flip-chip interconnects." JOM 53.6 (2001): pp. 28-33.
[14] Zeng, G., Xue, S., Zhang, L., Gao, L., Dai, W., & Luo, J. "A review on the interfacial intermetallic compounds between Sn–Ag–Cu based solders and substrates." Journal of Materials Science: Materials in Electronics 21.5 (2010): pp. 421-440.
[15] Lathrop, R., & Pfluke, K. "Novel: approaches to benchmarking solar cell tabbing solderability." Proceedings 26th European International Conference on Photovoltaic Solar Energy Location: Hamburg, Germany. (2011).
[16] 翁敏航, "太陽能電池-原理、元件、材料、製程與檢測技術". 民國99年: 83-92頁
[17] Gabor, A. M., Ralli, M., Montminy, S., Alegria, L., Bordonaro, C., Woods, J., Felton, L., Davis, M., Atchley, B., & Williams, T. "Soldering induced damage to thin Si solar cells and detection of cracked cells in modules." 21st European Photovoltaic Solar Energy Conference, Dresden, Germany, September. (2006): pp. 2042-2047.
[18] Hsieh, H. H., Lin, F. M., Yeh, F. Y., & Lin, M. H. "The effects of temperature and solders on the wettability between ribbon and solar cell." Solar Energy Materials and Solar Cells 93.6 (2009): pp. 864-868.
[19] Nieland, S., Baehr, M., Boettger, A., Ostmann, A., & Reichl, H. "Advantages of microelectronic packaging for low temperature lead free soldering of thin solar cells." 22nd European Photovoltaic Solar Energy Conference and Exhibition. (2007).
[20] Chen, C. M., & Chen, S. W. "Electric current effects on Sn/Ag interfacial reactions." Journal of electronic materials 28.7 (1999): pp. 902-906.
[21] Suganuma, K. "Advances in lead-free electronics soldering." Current Opinion in Solid State and Materials Science 5.1 (2001): pp. 55-64.
[22] Takemoto, T., & Funaki, T."Role of electrode potential difference between lead-free solder and copper base metal in wetting." Materials transactions 43.8 (2002): pp. 1784-1790.
[23] Allen, S. L., Notis, M. R., Chromik, R. R., & Vinci, R. P. "Microstructural evolution in lead-free solder alloys: Part I. Cast Sn–Ag–Cu eutectic." Journal of materials research 19.05 (2004): pp. 1417-1424.
[24] Hung, F. Y., Lin, H. M., Chen, P. S., Lui, T. S., & Chen, L. H. "A study of the thin film on the surface of Sn–3.5 Ag/Sn–3.5 Ag–2.0 Cu lead-free alloy." Journal of alloys and compounds 415.1 (2006): pp. 85-92.
[25] Rossiter, P. L. The electrical resistivity of metals and alloys. Cambridge University Press, (1991).
[26] Yu, D. Q., Chai, T. C., Thew, M. L., Ong, Y. Y., Rao, V. S., Wai, L. C., & Lau, J. H. "Electromigration study of 50 µm pitch micro solder bumps using four-point Kelvin structure." 2009 59th Electronic Components and Technology Conference. IEEE, (2009): pp. 930-935.
[27] Handbook, Metals. "Properties and selection: nonferrous alloys and pure metals." American Society for Metals, Metals Park, OH (1979): pp. 182.
[28] Wiese, S., Kraemer, F., Betzl, N., & Wald, D. "Interconnection technologies for photovoltaic modules-analysis of technological and mechanical problems." Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE), 2010 11th International Conference on. IEEE, (2010): pp. 1-6
[29] Chen, K. J., Hung, F. Y., Lui, T. S., Chen, L. H., Qiu, D. W., & Chou, T. L. "Microstructure and electrical mechanism of Sn–xAg–Cu PV-ribbon for solar cells." Microelectronic Engineering 116 (2014): pp. 33-39.
[30] Saunders, N., & Miodownik, A. P. "The Cu-Sn (copper-tin) system." Bulletin of Alloy Phase Diagrams 11.3 (1990): pp. 278-287.
[31] Bae, K. S., & Kim, S. J. "Microstructure and adhesion properties of Sn–0.7 Cu/Cu solder joints." Journal of materials research 17.04 (2002): pp. 743-746.
[32] Frear, D. R., Jang, J. W., Lin, J. K., & Zhang, C. "Pb-free solders for flip-chip interconnects." JOM 53.6 (2001): pp. 28-33.
[33] Islam, R. A., Wu, B. Y., Alam, M. O., Chan, Y. C., & Jillek, W. "Investigations on microhardness of Sn–Zn based lead-free solder alloys as replacement of Sn–Pb solder." Journal of alloys and compounds 392.1 (2005): pp. 149-158.
[34] Lan, G. A., Yang, C. W., Lui, T. S., & Chen, L. H. "Effect of Zinc Content on Microstructural Evolution and Electrification-Fusion-Induced Failure Mechanism of Sn-xZn Alloys." Materials transactions 52.1 (2011): pp. 54-60.
[35] Zeng, G., McDonald, S., & Nogita, K. "Development of high-temperature solders: review." Microelectronics Reliability 52.7 (2012): pp. 1306-1322.
[36] Lan, G. A., Lui, T. S., & Chen, L. H. "The role of eutectic phase and acicular primary crystallized Zn phase on electrification-fusion induced fracture of Sn-xZn solder alloys." Materials Transactions 52.11 (2011): pp. 2111-2118.
[37] ummala, E. R. R., & Rymaszewski, E. J. Rymaszewski. "Microelectronics Packaging Handbook." (1997).
[38] Lin, K. L., Wen, L. H., & Liu, T. P. "The microstructures of the Sn-Zn-Al solder alloys." Journal of electronic materials 27.3 (1998): pp. 97-105.
[39] Haddadi, F., Strong, D., & Prangnell, P. B. "Effect of zinc coatings on joint properties and interfacial reactions in aluminum to steel ultrasonic spot welding." JOM 64.3 (2012): pp. 407-413.
[40] Cho, M. G., Kang, S. K., Shih, D. Y., & Lee, H. M. "Effects of minor additions of Zn on interfacial reactions of Sn-Ag-Cu and Sn-Cu solders with various Cu substrates during thermal aging." Journal of Electronic Materials 36.11 (2007): pp. 1501-1509.
[41] Wang, F., Ma, X., & Qian, Y. "Improvement of microstructure and interface structure of eutectic Sn–0.7 Cu solder with small amount of Zn addition." Scripta materialia 53.6 (2005): pp. 699-702.
[42] 余昌和, "錫鋅銀銲錫合金元素在焊錫過程對銅金屬反應影響之研究." 成功大學材料科學及工程學系學位論文 (2006): 1-92頁
[43] 郭窈伶, "錫鋅共晶銲錫與電鍍鎳層之界面反應研究." 成功大學材料科學及工程學系學位論文 (2010): pp. 1-72.
[44] Ma, D., Wang, W. D., & Lahiri, S. K. "Scallop formation and dissolution of Cu–Sn intermetallic compound during solder reflow." Journal of applied physics 91.5 (2002): pp. 3312-3317.
[45] El-Daly, A. A., & Hammad, A. E. "Development of high strength Sn–0.7 Cu solders with the addition of small amount of Ag and In." Journal of Alloys and Compounds 509.34 (2011): pp. 8554-8560.
[46] Baker, H., & Okamoto, H. "Alloy phase diagrams." ASM International, ASM Handbook. 3 (1992): pp. 269,769.
[47] Lin, K. L., & Shih, C. L. "Wetting interaction between Sn-Zn-Ag solders and Cu." Journal of electronic materials 32.2 (2003): pp. 95-100.
[48] Hultgren, R., Desai, P. D., Hawkins, D. T., Gleiser, M., & Kelley, K. K. "Selected values of the thermodynamic properties of binary alloys. " National Standard Reference Data System, (1973).
[49] Hansen, M., Anderko, K., & Salzberg, H. W. "Constitution of binary alloys." Journal of the Electrochemical Society 105.12 (1958): pp. 260C-261C.
[50] Wang, F. J., Gao, F., Ma, X., & Qian, Y. Y. "Depressing effect of 0.2 wt.% Zn addition into Sn-3.0 Ag-0.5 Cu solder alloy on the intermetallic growth with Cu substrate during isothermal aging." Journal of electronic materials 35.10 (2006): pp. 1818-1824.
[51] Liu, X. J., Inohana, Y., Takaku, Y., Ohnuma, I., Kainuma, R., Ishida, K., Moser, Z., Gasior, W., & Pstrus, J. "Experimental determination and thermodynamic calculation of the phase equilibria and surface tension in the Sn-Ag-In system." Journal of electronic materials 31.11 (2002): pp. 1139-1151.
[52] Chen, S. W., Wang, C. H., Lin, S. K., & Chiu, C. N. "Phase diagrams of Pb-free solders and their related materials systems." Journal of Materials Science: Materials in Electronics 18.1-3 (2007): pp. 19-37.
[53] Nieland, S., Baehr, M., Boettger, A., Ostmann, A., & Reichl, H. "Advantages of microelectronic packaging for low temperature lead free soldering of thin solar cells." 22nd European Photovoltaic Solar Energy Conference and Exhibition. (2007).
[54] Black, J. R. "Electromigration failure modes in aluminum metallization for semiconductor devices." Proceedings of the IEEE 57.9 (1969): pp. 1587-1594.
[55] Black, J. R. "Electromigration—A brief survey and some recent results." IEEE Transactions on Electron Devices 16.4 (1969): pp. 338-347.
[56] Hung, Y. M., & Chen, C. M. "Electromigration of Sn-9wt.% Zn solder." Journal of Electronic Materials 37.6 (2008): pp. 887-893.
[57] Ye, H., Basaran, C., Hopkins, D. C., Frear, D., & Lin, J. K. "Damage mechanics of microelectronics solder joints under high current densities." Electronic Components and Technology Conference, 2004. Proceedings. 54th. Vol. 1. IEEE, (2004): pp. 7269-7284.
[58] Ye, H., Basaran, C., Hopkins, D. C., Frear, D., & Lin, J. K. "Damage mechanics of microelectronics solder joints under high current densities." Electronic Components and Technology Conference, 2004. Proceedings. 54th. Vol. 1. IEEE, (2004): pp. 998-997.
[59] Nah, J. W., Suh, J. O., & Tu, K. N. "Effect of current crowding and Joule heating on electromigration-induced failure in flip chip composite solder joints tested at room temperature." Journal of applied physics 98.1 (2005): pp. 013715.
[60] 陳欣楷, "以數值分析來研究覆晶銲點之電遷移現象." 中央大學化學工程與材料工程學系學位論文 (2007): 1-85頁
[61] 余昌和, "錫鋅銀銲錫合金元素在焊錫過程對銅金屬反應影響之研究." 成功大學材料科學及工程學系學位論文 (2006): 1-92頁
[62] Smetana, B., Zlá, S., Kroupa, A., Žaludová, M., Drápala, J., Burkovič, R., & Petlák, D. "Phase transition temperatures of Sn–Zn–Al system and their comparison with calculated phase diagrams." Journal of thermal analysis and calorimetry 110.1 (2012): pp. 369-378.
[63] Jorgensen, G., Terwilliger, K., Glick, S., Pern, J., & McMahon, T. "Materials testing for PV module encapsulation." Proc. DOE’s Program Review Meeting. (2003).
[64] Park, M. S., & Arroyave, R. "Formation and growth of intermetallic compound Cu6Sn5 at early stages in lead-free soldering." Journal of electronic materials 39.12 (2010): pp. 2574-2582.
[65] Chen, H. Y., & Chen, C. "Thermomigration of Cu–Sn and Ni–Sn intermetallic compounds during electromigration in Pb-free SnAg solder joints." Journal of Materials Research 26.08 (2011): pp. 983-991.
[66] 陳郁雯, "Sn-Zn 無鉛銲錫光伏銅帶之界面微觀組織特徵及剝離力研究." 成功大學材料科學及工程學系學位論文 (2013): 1-67頁
校內:2022-07-30公開