| 研究生: |
王健雄 Wang, Chien-Hsiung |
|---|---|
| 論文名稱: |
2024-T3鋁合金材料鏽蝕對疲勞行為之影響 Effect of Corrosion on the Fatigue Behavior of 2024-T3 Aluminum Alloy |
| 指導教授: |
崔兆棠
Choi, Siu-Tong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系碩士在職專班 Department of Aeronautics & Astronautics (on the job class) |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 交互浸潤鏽蝕 、應力-疲勞壽命曲線 |
| 外文關鍵詞: | alternative immersion corrosion, S-N curve |
| 相關次數: | 點閱:113 下載:25 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗係以2024-T3鋁合金為基材,在實驗室中的人造鏽蝕環境下以交互浸潤鏽蝕法(Alternative Immersion Corrosion Process),對2024-T3鋁合金試片在3.5%的氯化鈉溶液中分別進行7、21及42天的連續浸潤-風乾的鏽蝕程序。在試片完成鏽蝕程序後,施以不同程度的應力進行疲勞試驗,以獲得在不同鏽蝕天數下的應力-疲勞壽命曲線。最後再以電子顯微鏡進行材料斷裂面的孔蝕深度及面積的觀測,藉此找出鏽蝕程度與疲勞壽命間的關係。
實驗結果顯示試片的疲勞壽命隨鏽蝕時間的增加而降低,以在25 ksi循環應力下的結果為例,經7、21及42天浸潤鏽蝕之試片的疲勞壽命分別為86,100、67,200及56,200次循環;後者的疲勞壽命相較於前二者的疲勞壽命衰減的幅度分別約為35%及16%。材料的疲勞壽命係受到鏽蝕深度、孔蝕前端形狀、鏽蝕造成的截面積損失、多區域疲勞裂紋發展及承受應力等各項因素間交互影響而呈現衰減趨勢。
In this study, the 2024-T3 aluminum alloy was used as base material. By using alternative immersion corrosion process with an artificial corrosive environment in laboratory, 2024-T3 aluminum alloy specimens were subjected to continual immersion-dry process in 3.5% sodium chloride solution for 7, 21, and 42 days, respectively. After the corrosion process, the specimens were then subjected to fatigue test at different stress levels and S-N curves of material under different corrosion level were obtained. In addition, through the use of Scanning Electronic Microscope, the depth and dimension of pitting on the fracture surface of specimens were observed.
The experiment results show that the fatigue lives of specimens reduce as the exposure time increases. For example, at the stress level of 25 ksi, fatigue lives of specimens subjected to immersion-dry process for 42 days reduce approximately by 35% and 16%, respectively, as compared to those subjected to processes for 7 and 21 days. Furthermore, fatigue life of material was affected by the combined effects of pit depth, leading edge shape of pit, loss of cross-section, multiple fatigue cracks growth and stress.
1.行政院飛安委員會,中華航空公司CI7552班機737-800型客機於日本佐賀機場過境檢查發現機腹蒙皮30吋裂紋飛航事故調查報告,行政院飛安委員會,台北,中華民國98年06月.
2.F. M. Grimsley, J. W. Lincoln, and M. L. Zeigler, “USAF Strategy for Aging Aircraft Structures Research and Development”, Life Management Techniques for Ageing Air Vehicles, 8-11 October 2001, Manchester, United Kingdom, pp. (SM)5-1~13, 2001.
3.交通部統計處,臺灣地區氣候概況分析,台北,中華民國98年08月.
4.W. D. Callister, Materials Science and Engineering: an Introduction, John Wiley & Sons, Inc, New York, 2007.
5.United States Air Force, Cleaning and Corrosion Prevention and Control, Aerospace and Non-Aerospace Equipment, TO. 1-1-691, 2003.
6.陸宗順,飛機失事調查,空軍軍官學校飛行安全教育訓練中心,高雄,1994.
7.“ASTM-G44: Standard Practices for Evaluating Stress Corrosion Cracking Resistance of Metals and Alloys by Alternate Immersion in 3.5% Sodium Chloride Solution”, 1995 Annual Book of ASTM Standards, Sec.3, Vol. 2, pp. 172-175.
8.R. Braun, “Slow strain rate testing of high-strength aluminum alloy plate in an aqueous solution of 3% NaCl + 0.3% H2O2”, Werkstoffe und Korrosion, Vol. 45, pp. 369~377,1994.
9.S.-M. Li, H.-R. Zhang and J.-H. Liu, “Corrosion behavior of aluminum alloy 2024-T3 by 8-hydroxy quinoline and its derivative in 3.5% chloride solution”, Transactions of Nonferrous Metals Society of China, Vol. 17, pp. 318~325, 2007.
10.王心靈, 7075-T73 鋁合金材料於本島氣候之銹蝕行為研究, 國科會國防科技計報告, 台北, 中華民國95年03月.
11.S. G. Pantelakis, P. G. Daglaras, and C. A. Apostolopoulos, “Tensile and Energy Density Properties of 2024, 6013, 8090 and 2091 Aircraft Aluminum Alloy after Corrosion Exposure”, Theoretical and Applied Fracture Mechanics, Vol. 33, pp. 117–134, 2000.
12.E. J. Dolley, B. Lee and R. P. Wei, “The Effect of Pitting Corrosion on Fatigue Life”, Fatigue & Fracture of Engineering Materials & Structures, Vol. 23, pp. 555–560, 2000..
13.L. V. Corsetti and D. J. Duquette, “The Effect of Mean Stress and Environment on Corrosion Fatigue Behavior of 7075-T6 Aluminum”, Metallurgical Transactions, Vol. 5, pp. 1087–1093, 1974.
14.C. K. Lin and S. T. Yang, “Corrosion Fatigue Behavior of 7050 Aluminum Alloys in Different Tempers”, Engineering Fracture Mechanics, Vol. 59, pp. 779–795, 1998.
15.K. Jones and D. W. Hoeppner, “Prior corrosion and fatigue of 2024-T3 Aluminum alloy”, Corrosion Science, Vol. 48, pp. 3109–3122, 2006.
16.N. D. Alexopoulos, “On the Corrosion-Induced Mechanical Degradation for Different Artificial Aging Conditions of 2024 Aluminum Alloy”, Material Science and Engineering A, Vol. 520, pp. 40–48, 2009.
17.K. M. Gruenberg, B. A. Craig, B. M. Hillberry, R. J. Bucci, and A. J. Hinkle, “Predicting Fatigue Life of Pre-corroded 2024-T3 Aluminum”, International Journal of Fatigue, Vol.26, pp. 629–640, 2004.
18.莊東漢, 材料破損分析, 五南出版社, 台北, 2007.
19.“ASTM-G1: Standard Practices for Preparing, Cleaning, and Evaluating Corrosion Testing Specimens”, Annual Book of ASTM Standards, Sec. 3, Vol. 2, pp. 15-21, 1997.
20.“Alloy 2024 Data Sheet”, Alcoa Inc. United States.
21.“ASTM-E8: Standard Test Methods for Tension Testing of Metallic Materials”, 1993 Annual Book of ASTM Standards, Sec. 3, Vol. 1, pp. 130-149.
22.W.F. Smith, Principles of Materials Science and Engineering, McGraw-Hill, Inc, 1986, New York.