簡易檢索 / 詳目顯示

研究生: 廖浚凱
Liao, Chun-Kai
論文名稱: 利用氧化鋁鋅緩衝層降低源汲極串聯電阻與氧化矽鉿介電層於優化氮氧化鋅薄膜電晶體電特性之研究
Improved Electrical Performance of ZnON Thin-Film Transistors with Hf0.86Si0.14O Gate Dielectric Using AZO Buffer Layer to Reduced S/D Series Resistance
指導教授: 王水進
Wang, Shui-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 145
中文關鍵詞: 共濺鍍氧化矽鉿氮氧化鋅氧化鋁鋅緩衝層串聯電阻環形傳輸線性量測特徵接觸電阻穿隧效應薄膜電晶體
外文關鍵詞: ZnON, Hf0.86Si0.14O, Tunneling effect, Buffer layer, AZO, Source/Drain resistance, CTLM, Contact resistance, Specific resistance, Thin film transistor
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮氧化鋅(ZnON)通道層與源/汲極(S/D)金屬之搭配極為重要,一旦特徵接觸電阻(Specific contact resistance, ρ_c)以及源/汲極串聯電阻(Source/Drain resistance, R_SD)過高,將嚴重減損ZnON導通電流。為降低S/D串聯電阻、提升ZnON薄膜電晶體(ZnON TFTs)之閘極控制力、抑制閘極漏電電流與降低操作電壓,本論文引入氧化鋁鋅(AZO)緩衝層(Buffer layer, BL)於主動層及源/汲之間,利用穿隧效應大幅降低R_SD,並以共濺鍍法開發氧化矽鉿高介電係數材料作為閘極介電層,提升元件電特性。
    本研究分為三大部分,第一部分為S/D金屬之選擇,探究其與半導體接觸之特徵接觸電阻。利用環形傳輸線性量測(CTLM)金屬與ZnON及AZO之ρ_c,並藉由所製備TFT之元件電特性萃取R_SD並比較進行分析。實驗結果顯示,於鎳、鈦與鋁幾種金屬中,鋁金屬擁有最較佳接觸特性。第二部分固定S/D為鋁金屬,引入AZO BL,並成功利用調變沉積壓力來改變AZO薄膜包括載子移動率、載子濃度與電阻率等之材料特性。據XPS薄膜分析結果顯示,利用不同之沉積壓力可調整AZO薄膜之氧空缺濃度。歸納於不同沉積壓力製備AZO薄膜量測所得ρ_c與霍爾量測結果顯示,以4 mTorr沉積之AZO薄膜量可擁有最高載子濃度與最低ρ_c。另於4 mTorr沉積所得不同層厚AZO薄膜的TFT元件特性分析結果顯示,數據顯示AZO薄膜厚度為25 nm時,元件擁有最佳特性。第三部分進一步分析熱退火對AZO緩衝層材料特性與ρ_c之影響及其對應用於ZnON TFT元件電特性與R_SD之影響。
    本論文於第一部分探討不同S/D金屬對於ZnON通道層ρ_c之影響及其與TFT電特性與R_SD關係之研究結果顯示,於鎳、鈦與鋁三種金屬中,鋁應為最佳S/D金屬。ρ_c分別為鎳金屬之1.17×10-2 Ω-cm2、鈦金屬之2.47×10-3 Ω-cm2以及鋁金屬之與4.35×10-4 Ω-cm2,而R_SD由49.4 kΩ下降至28.2 kΩ,歸功於Al S/D與ZnON兩種材料間有較低的功函數差異。
    於第二部分為AZO BL之製備及材料分析研究結果方面,於藉由濺鍍系統製程壓力調變AZO薄膜之載子濃度、載子移動率及電阻率之實驗上,利用4、6、8與12 mTorr沉積之AZO薄膜,依據CTLM及霍爾量測輔以XPS分析,確認4 mTorr沉積之AZO薄膜擁有最高氧空缺比例(53.2 %),展現最高濃度(3.8×1020 cm-3)與最低電阻率(6.42×10-3 Ω-cm),因薄膜之Al成分比例較高。於緩衝層最適化薄膜厚度探討上,實驗結果顯示於4 mTorr沉積壓力條件所製備膜厚度為25-nm-AZO緩衝層於TFT應用可使元件擁有最佳特性(其μ_FE、SS、I_on/I_off、V_TH與I_on分別為28.1 cm2/V∙s、86 mV/dec、3.01×107、0.2 V與1.12×10-4 A)。
    於第三部份有關熱退火溫度(100 oC、200 oC與300 oC)對AZO緩衝層材料特性與ρ_c之影響及其對應用於ZnON TFT元件電特性與R_SD之影響研究方面,證實進一步退火處理AZO BL可提升濃度並同時降低電阻率,由未退火之3.8×1020 cm-3與6.42×10-3 Ω-cm優化至PDA 300 ºC之5.87×1020 cm-3與1.81×10-3 Ω-cm。於TFT應用上,熱退火除了降低ρ_c亦更進一步降低TFT元件之R_SD,提高導通電流(I_on),大幅優化元件特性,由Device A1之8.7 kΩ與1.12×10-4 A優化至Device B25-300 之5.97 kΩ與2.83×10-4。實驗結果顯示,選用鋁作為S/D金屬,確實可降低電極與薄膜之R_c與ρ_c,亦減少R_SD。使用緩衝層於S/D與通道層間,不但可大幅降低S/D接觸之ρ_c與TFT之元件電特性與R_SD。相較w/o PDA之元件,應用經300 oC熱退火處理AZO緩衝層於ZnON TFTs可擁有現較佳的元件特性,其載子移動率由28.1提升至35.9 cm2/V∙s、次臨界擺幅由86降為84 mV/dec、元件電流開關比由3.01×107增為7.26×107、臨界電壓由0.2變為0.16 V。
    本論文利用不同沉積壓力製備AZO BL應用於ZnON薄膜電晶體之研究,於利用退火緩衝層降低ρ_c、R_SD、大幅提升導通電流與電流開關比等TFT元件特性之實驗結果,預期將有助於OLED先進顯示技術之應用以及面板性能之提升。

    In regular ZnON TFTs, the device properties show high contact resistance between the source/drain (S/D) electrode, which decreases turn-on current (I_on), Subthreshold Swing (SS), and low mobility. In this work, reducing the resistance between the S/D and channel layer (R_SD) with better performance of ZnON device by tunneling effect with aluminum zinc oxide (AZO) buffer layer (BL) between S/D and channel. In order to improve the electrical properties of ZnON TFTs with hafnium silicon oxide (Hf0.86Si0.14O) as gate dielectrics and use sputtering deposited high concentration (> 1020 cm-3) AZO BL. For investing contact resistance (R_c) of S/D with ZnON and AZO BL, use circular transmission line measurement (CTLM). It can get R_c and specifitic resistance (ρ_c). Experimental results reveal that AZO BL was deposited at power 60 W in 4 mTorr chamber pressure by post deposition annealing (PDA) in N2 at 300 ºC shows the best device performance such as the on/off current ratio of 7.26×107, the I_on of 2.83×10-4 A, the mobility (μ_FE) of 35.9 cm2V-1s-1, the SS of 84 mV/dec, the ρ_c of 5.83×10-5 Ω-cm2, and the R_SD of 5.97 kΩ, respectively.

    摘要 I 英文摘要 V 目錄 XV 圖目錄 XVIII 表目錄 XXI 第一章 緒論 1 1-1 薄膜電晶體應用於平面顯示器 1 1-2 通道層氮氧化鋅之發展及應用 3 1-3 介電層high-κ材料技術之選用於薄膜電晶體 10 1-4 源/汲極金屬與緩衝層材料之選用條件 16 1-4-1 源/汲極金屬選用考量 16 1-4-2 緩衝層選用考量 18 1-5 研究動機 20 第二章 薄膜電晶體理論及特性優化概述 23 2-1 薄膜電晶體操作原理與相關參數萃取 23 2-1-1 TFT通道全空乏理論 24 2-1-2 薄膜電晶體操作原理 25 2-1-3 薄膜電晶體電性參數萃取 28 2-2 歐姆接觸 (Ohmic contact) 32 2-3 特徵接觸電阻與環形傳輸線性量測(CTLM) 34 2-4 降低RSD對策與量測方法 38 第三章 ZnON-TFT元件製備流程 41 3-1 ZnON-TFT之製備流程 41 3-2 共濺鍍系統與氧化矽鉿介電層之製備 44 3-3 氮氧化鋅通道層之製備流程 47 3-4 緩衝層之製備 49 3-5 源/汲極金屬之製備 49 3-6 鈍化層之製備 52 第四章 ZnON TFTs的介電層、通道層及緩衝層之材料與電性分析 54 4-1 Hf1-xSixO介電層之材料與電性分析 54 4-1-1 功率調變於Hf1-xSixO介電薄膜組成之影響 55 4-1-2 退火溫度於Hf1-xSixO介電薄膜晶相轉移之影響 56 4-1-3 Al/ Hf1-xSixO/ n+-Si電容器之電特性分析 57 4-1-4 Hf1-xSixO介電薄膜特性研究之總結 63 4-2 N(19%)-ZnON通道層材料與電性分析 64 4-2-1 N(19%)-ZnON不同退火溫度之霍爾量測 65 4-2-2 N(19%)-ZnON之XRD薄膜分析 68 4-2-3 N(19%)-ZnON之XPS薄膜分析 69 4-2-4 N(19%)-ZnON之穿透率量測 72 4-2-5 ZnON通道薄膜特性研究之結語 73 4-3 AZO緩衝層與S/D電極之材料與電性 75 4-3-1 不同沉積壓力所製備AZO薄膜之材料特性分析 75 4-3-2 不同沉積壓力所製備AZO薄膜之電性分析 78 4-3-3 AZO薄膜於不同退火溫度之晶體品質與電性分析 79 4-3-4 AZO薄膜特性研究之結語 82 4-4 第四章之結語 84 第五章 源/汲極金屬之特徵接觸電阻量測與串聯電阻對元件特性之探討 85 5-1 S/D金屬對ZnON TFTs特性影響分析 86 5-1-1 Al、Ti及Ni金屬與ZnON薄膜所形成金半接面之特徵接觸電阻量測與分析 ………………………………………………………………………………………….87 5-1-2 ZnON TFTs (Device A1~A4)之元件電特性分析 90 5-1-3 ZnON TFTs (Device A1~A4)之串聯電阻分析 93 5-2 具AZO緩衝層ZnON TFTs之電特性 95 5-2-1 AZO緩衝層與Al金屬接面之接觸電阻量測分析 97 5-2-2 AZO緩衝層薄膜厚度於ZnON TFT電特性之影響 101 5-2-3 不同厚度緩衝層之串聯電阻 107 5-3 退火處理緩衝層並探討厚度對元件特性分析 110 5-3-1 退火處理緩衝層與鋁金屬之特徵接觸電阻量測 112 5-3-2 AZO緩衝層退火溫度於ZnON TFT電特性之影響 114 5-3-3 不同退火溫度緩衝層之串聯電阻 117 5-4 緩衝層對ZnON通道層與Hf0.86Si0.14O介電層之元件可靠度分析 119 5-4-1 Device A1、Device B25與Device B25-300於室溫下長時間偏壓應力 119 5-4-2 Device A1、Device B25與Device B25-300之負偏壓照光穩定度 122 5-4-3 Device A1、Device B25與Device B25-300之熱穩定 124 5-5 氮氧化鋅薄膜電晶體元件特性統整&文獻比較 126 第六章 結論與未來研究建議 129 6-1 結論 129 6-2 未來研究之建議 131 參考資料 133

    [1] P. K. Nayak, Z. Wang, D. H. Anjum, M. N. Hedhili, and H. N. Alshareef, "Highly stable thin film transistors using multilayer channel structure," Applied Physics Letters, vol. 106, no. 10, p. 103505, 2015.
    [2] M. K. Lee et al., "Electro-thermal annealing method for recovery of cyclic bending stress in flexible a-IGZO TFTs," IEEE Transactions on Electron Devices, vol. 64, no. 8, pp. 3189-3192, 2017.
    [3] L.-L. Zheng, Q. Ma, Y.-H. Wang, W.-J. Liu, S.-J. Ding, and D. W. Zhang, "High-performance unannealed a-InGaZnO TFT with an atomic-layer-deposited SiO 2 insulator," IEEE Electron Device Letters, vol. 37, no. 6, pp. 743-746, 2016.
    [4] X. Ding et al., "IGZO thin film transistors with Al2O3 gate insulators fabricated at different temperatures," Materials Science in Semiconductor Processing, vol. 29, pp. 69-75, 2015.
    [5] L. Qian and P. Lai, "A study on the electrical characteristics of InGaZnO thin-film transistor with HfLaO gate dielectric annealed in different gases," Microelectronics Reliability, vol. 54, no. 11, pp. 2396-2400, 2014.
    [6] N. Su, S.-J. Wang, and A. Chin, "A Low Operating Voltage ZnO Thin Film Transistor Using a High-κ HfLaO Gate Dielectric," Electrochemical and Solid-State Letters, vol. 13, no. 1, pp. H8-H11, 2010.
    [7] N.-C. Su et al., "The Role of High-κ TiHfO Gate Dielectric in Sputtered ZnO Thin-Film Transistors," Japanese Journal of Applied Physics, vol. 49, no. 4S, p. 04DA12, 2010.
    [8] H.-Y. Huang, S.-J. Wang, C.-H. Wu, C.-K. Chiang, Y.-C. Huang, and J.-Y. Su, "Low driving voltage amorphous In–Ga–Zn–O thin film transistors with small subthreshold swing using high-κ Hf–Si–O dielectrics," Applied Physics Express, vol. 3, no. 12, p. 121501, 2010.
    [9] N. Su, S.-J. Wang, and A. Chin, "High-performance InGaZnO thin-film transistors using HfLaO gate dielectric," IEEE Electron Device Letters, vol. 30, no. 12, pp. 1317-1319, 2009.
    [10] N.-C. Su, S. J. Wang, and A. Chin, "A nonvolatile InGaZnO charge-trapping-engineered flash memory with good retention characteristics," IEEE Electron Device Letters, vol. 31, no. 3, pp. 201-203, 2010.
    [11] G. Neumann, "On the Defect Structure of Zinc‐Doped Zinc Oxide," physica status solidi (b), vol. 105, no. 2, pp. 605-612, 1981.
    [12] Ü. Özgür et al., "A comprehensive review of ZnO materials and devices," Journal of applied physics, vol. 98, no. 4, p. 11, 2005.
    [13] T. Hirao et al., "4.1: Distinguished Paper: High Mobility Top‐Gate Zinc Oxide Thin‐Film Transistors (ZnO‐TFTs) for Active‐Matrix Liquid Crystal Displays," in SID Symposium Digest of Technical Papers, 2006, vol. 37, no. 1: Wiley Online Library, pp. 18-20.
    [14] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, "Transparent thin film transistors using ZnO as an active channel layer and their electrical properties," Journal of Applied Physics, vol. 93, no. 3, pp. 1624-1630, 2003.
    [15] J. K. Jeong, "The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays," Semiconductor Science and Technology, vol. 26, no. 3, p. 034008, 2011.
    [16] J.-Y. Kwon, D.-J. Lee, and K.-B. Kim, "Transparent amorphous oxide semiconductor thin film transistor," Electronic Materials Letters, vol. 7, no. 1, pp. 1-11, 2011.
    [17] J.-Y. Kwon et al., "Investigation of light-induced bias instability in Hf-In-Zn-O thin film transistors: A cation combinatorial approach," Journal of The Electrochemical Society, vol. 158, no. 4, pp. H433-H437, 2011.
    [18] H.-S. Kim et al., "The influence of In/Zn ratio on the performance and negative-bias instability of Hf–In–Zn–O thin-film transistors under illumination," IEEE Electron Device Letters, vol. 32, no. 9, pp. 1251-1253, 2011.
    [19] S. Lany and A. Zunger, "Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors," Physical Review B, vol. 72, no. 3, p. 035215, 2005.
    [20] H. Hosono, "Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application," Journal of Non-Crystalline Solids, vol. 352, no. 9-20, pp. 851-858, 2006.
    [21] H.-S. Kim et al., "Anion control as a strategy to achieve high-mobility and high-stability oxide thin-film transistors," Scientific reports, vol. 3, p. 1459, 2013.
    [22] J. T. Jang et al., "The Influence of Anion Composition on Subgap Density of States and Electrical Characteristics in ZnON Thin-Film Transistors," IEEE Electron Device Letters, vol. 40, no. 1, pp. 40-43, 2018.
    [23] J. Park, Y. S. Kim, J. H. Kim, K. Park, Y. C. Park, and H.-S. Kim, "The effects of active layer thickness and annealing conditions on the electrical performance of ZnON thin-film transistors," Journal of Alloys and Compounds, vol. 688, pp. 666-671, 2016.
    [24] C.-Y. Jeong et al., "Investigation of Low-Frequency Noise Properties in High-Mobility ZnON Thin-Film Transistors," IEEE Electron Device Letters, vol. 37, no. 6, pp. 739-742, 2016.
    [25] T. Suda and K. Kakishita, "Band-gap energy and electron effective mass of polycrystalline Zn 3 N 2," ed: AIP, 2006.
    [26] J. Srivastava, S. Nahas, S. Bhowmick, and A. Gaur, "Electronic structure and transport in amorphous metal oxide and amorphous metal oxy-nitride semiconductors," arXiv preprint arXiv:1812.11333, 2018.
    [27] J. Park, H.-J. Jeong, H.-M. Lee, H.-H. Nahm, and J.-S. Park, "The resonant interaction between anions or vacancies in ZnON semiconductors and their effects on thin film device properties," Scientific reports, vol. 7, no. 1, p. 2111, 2017.
    [28] E. Lee et al., "Nanocrystalline ZnON; High mobility and low band gap semiconductor material for high performance switch transistor and image sensor application," Scientific reports, vol. 4, p. 4948, 2014.
    [29] Y. Ye, R. Lim, and J. M. White, "High mobility amorphous zinc oxynitride semiconductor material for thin film transistors," Journal of applied physics, vol. 106, no. 7, p. 074512, 2009.
    [30] C.-I. Kuan, H.-C. Lin, P.-W. Li, and T.-Y. Huang, "High-Performance Submicrometer ZnON Thin-Film Transistors With Record Field-Effect Mobility," IEEE Electron Device Letters, vol. 37, no. 3, pp. 303-305, 2016, doi: 10.1109/led.2016.2518404.
    [31] J. Park et al., "A study on the electron transport properties of ZnON semiconductors with respect to the relative anion content," Scientific reports, vol. 6, p. 24787, 2016.
    [32] H.-J. Jeong, H.-M. Lee, K.-C. Ok, J. Park, and J.-S. Park, "Supreme performance of zinc oxynitride thin film transistors via systematic control of the photo-thermal activation process," Journal of Materials Chemistry C, vol. 6, no. 19, pp. 5171-5175, 2018.
    [33] H.-S. Jeong, D.-H. Kim, and H.-I. Kwon, "Enhanced Electrical Performance and Stability in Zinc Oxynitride Thin-Film Transistors via Sequential Ultraviolet and Thermal Treatment," IEEE Electron Device Letters, vol. 38, no. 7, pp. 883-886, 2017.
    [34] H. Jeong, H.-S. Jeong, D.-H. Kim, C.-Y. Jeong, and H.-I. Kwon, "Effects of Post-Deposition Thermal Annealing Temperature on Electrical Properties of ZnON Thin-Film Transistors," IEEE Electron Device Letters, pp. 1-1, 2016, doi: 10.1109/led.2016.2559523.
    [35] H.-J. Jeong et al., "Ultra-High-Speed Intense Pulsed-Light Irradiation Technique for High-Performance Zinc Oxynitride Thin-Film Transistors," ACS applied materials & interfaces, vol. 11, no. 4, pp. 4152-4158, 2019.
    [36] X. Ding, J. Yang, C. Qin, X. Yang, T. Ding, and J. Zhang, "Nitrogen-doped ZnO film fabricated via rapid low-temperature atomic layer deposition for high-performance ZnON transistors," IEEE Transactions on Electron Devices, vol. 65, no. 8, pp. 3283-3290, 2018.
    [37] C.-I. Kuan, H.-C. Lin, P.-W. Li, and T.-Y. Huang, "Short-channel ZnON thin-film transistors with film profile engineering," in 2016 IEEE Silicon Nanoelectronics Workshop (SNW), 2016: IEEE, pp. 66-67.
    [38] J. Park et al., "A study on the electron transport properties of ZnON semiconductors with respect to the relative anion content," Sci Rep, vol. 6, p. 24787, Apr 21 2016, doi: 10.1038/srep24787.
    [39] K.-C. Ok, H.-J. Jeong, H.-S. Kim, and J.-S. Park, "Highly Stable ZnON Thin-Film Transistors With High Field-Effect Mobility Exceeding 50$mathrm {cm}^{2} $/Vs," IEEE Electron Device Letters, vol. 36, no. 1, pp. 38-40, 2014.
    [40] B. Cheng et al., "The impact of high-/spl kappa/gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs," IEEE Transactions on Electron Devices, vol. 46, no. 7, pp. 1537-1544, 1999.
    [41] J. Robertson and R. M. Wallace, "High-K materials and metal gates for CMOS applications," Materials Science and Engineering: R: Reports, vol. 88, pp. 1-41, 2015.
    [42] S. Kar, High permittivity gate dielectric materials. Springer, 2013.
    [43] G. D. Wilk, R. M. Wallace, and J. M. Anthony, "High-κ gate dielectrics: Current status and materials properties considerations," Journal of Applied Physics, vol. 89, no. 10, pp. 5243-5275, 2001, doi: 10.1063/1.1361065.
    [44] H. L. Lu and D. W. Zhang, "Issues in High‐k Gate Dielectrics and its Stack Interfaces," High‐k Gate Dielectrics for CMOS Technology, pp. 31-59, 2012.
    [45] H.-H. Tseng, "The progress and challenges of applying high-k/metal-gated devices to advanced CMOS technologies," in Solid State Circuits Technologies: IntechOpen, 2010.
    [46] M.-T. Ho et al., "In situ infrared spectroscopy of hafnium oxide growth on hydrogen-terminated silicon surfaces by atomic layer deposition," Applied Physics Letters, vol. 87, no. 13, p. 133103, 2005.
    [47] P. Barquinha, L. Pereira, G. Goncalves, R. Martins, and E. Fortunato, "The effect of deposition conditions and annealing on the performance of high-mobility GIZO TFTs," Electrochemical and Solid-State Letters, vol. 11, no. 9, pp. H248-H251, 2008.
    [48] P. Taechakumput, S. Taylor, O. Buiu, R. Potter, P. Chalker, and A. Jones, "Optical and electrical characterization of hafnium oxide deposited by liquid injection atomic layer deposition," Microelectronics Reliability, vol. 47, no. 4-5, pp. 825-829, 2007.
    [49] V. Mikhelashvili and G. Eisenstein, "Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation," Journal of Applied Physics, vol. 89, no. 6, pp. 3256-3269, 2001.
    [50] M.-H. Cho et al., "Thermal stability and structural characteristics of HfO 2 films on Si (100) grown by atomic-layer deposition," Applied physics letters, vol. 81, no. 3, pp. 472-474, 2002.
    [51] T. Klein et al., "Evidence of aluminum silicate formation during chemical vapor deposition of amorphous Al 2 O 3 thin films on Si (100)," Applied Physics Letters, vol. 75, no. 25, pp. 4001-4003, 1999.
    [52] S. Hu, "Stress‐related problems in silicon technology," Journal of applied physics, vol. 70, no. 6, pp. R53-R80, 1991.
    [53] Y. Morisaki, Y. Sugita, K. Irino, and T. Aoyama, "Effects of interface oxide layer on HfO 2 gate dielectrics [MISFETS]," in Extended Abstracts of International Workshop on Gate Insulator. IWGI 2001 (IEEE Cat. No. 01EX537), 2001: IEEE, pp. 184-187.
    [54] H. Chakraborty and D. Misra, "Characterization of high-k gate dielectrics using MOS capacitors," International Journal of Scientific and Research Publications, vol. 3, pp. 1-5, 2013.
    [55] X. Zhao and D. Vanderbilt, "First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide," Physical Review B, vol. 65, no. 23, p. 233106, 2002.
    [56] P. K. Park and S.-W. Kang, "Enhancement of dielectric constant in HfO2 thin films by the addition of Al2O3," Applied Physics Letters, vol. 89, no. 19, 2006, doi: 10.1063/1.2387126.
    [57] L. C. Gallington et al., "The Structure of Liquid and Amorphous Hafnia," Materials (Basel), vol. 10, no. 11, Nov 10 2017, doi: 10.3390/ma10111290.
    [58] H.-Y. Huang et al., "High performance and low driving voltage amorphous InGaZnO thin-film transistors using high-к HfSiO dielectrics," in 68th Device Research Conference, 2010: IEEE, pp. 235-236.
    [59] K. Kandpal and N. Gupta, "Investigations on high-κ dielectrics for low threshold voltage and low leakage zinc oxide thin-film transistor, using material selection methodologies," Journal of Materials Science: Materials in Electronics, vol. 27, no. 6, pp. 5972-5981, 2016.
    [60] W. Yang et al., "Optical properties and bandgap evolution of ALD HfSiO x films," Nanoscale research letters, vol. 10, no. 1, p. 32, 2015.
    [61] S. Kim, M.-H. Ham, B.-Y. Oh, H. J. Kim, and J.-M. Myoung, "High-k TixSi1− xO2 thin films prepared by co-sputtering method," Microelectronic Engineering, vol. 85, no. 1, pp. 100-103, 2008.
    [62] B.-X. Yang, C.-Y. Tseng, A. S.-T. Chiang, and C.-L. Liu, "A sol–gel titanium–silicon oxide/organic hybrid dielectric for low-voltage organic thin film transistors," Journal of Materials Chemistry C, vol. 3, no. 5, pp. 968-972, 2015.
    [63] G. Dewey, R. S. Chau, M. Radosavljevic, H. W. Then, S. B. Clendenning, and R. Pillarisetty, "Non-planar III-V field effect transistors with conformal metal gate electrode and nitrogen doping of gate dielectric interface," ed: Google Patents, 2014.
    [64] S. B. Herner and A. Bandyopadhyay, "Highly scalable thin film transistor," ed: Google Patents, 2011.
    [65] R. D. Clark, "Method for depositing dielectric films," ed: Google Patents, 2015.
    [66] H. Yan, T. Kagata, S. Arima, H. Sato, and H. Okuzaki, "High‐dielectric‐constant hafnium silicate insulator for low‐voltage pentacene field‐effect transistors," physica status solidi (a), vol. 205, no. 12, pp. 2970-2974, 2008.
    [67] D. Cho et al., "High performance thin film transistor with HfSiO x dielectric fabricated at room temperature RF-magnetron sputtering," Electronic Materials Letters, vol. 9, no. 4, pp. 381-384, 2013.
    [68] L.-p. Feng, Z.-t. Liu, and Y.-m. Shen, "Compositional, structural and electronic characteristics of HfO2 and HfSiO dielectrics prepared by radio frequency magnetron sputtering," Vacuum, vol. 83, no. 5, pp. 902-905, 2009.
    [69] G.-M. Rignanese, X. Gonze, G. Jun, K. Cho, and A. Pasquarello, "First-principles investigation of high-κ dielectrics: Comparison between the silicates and oxides of hafnium and zirconium," Physical Review B, vol. 69, no. 18, p. 184301, 2004.
    [70] R. T. Tung, "Chemical bonding and Fermi level pinning at metal-semiconductor interfaces," Physical review letters, vol. 84, no. 26, p. 6078, 2000.
    [71] C.-R. Hu, "Midgap surface states as a novel signature for d x a 2-x b 2-wave superconductivity," Physical review letters, vol. 72, no. 10, p. 1526, 1994.
    [72] S.-H. Kim, G.-S. Kim, S.-W. Kim, and H.-Y. Yu, "Source/Drain Contact Resistance Reduction through Al-Doped ZnO Interlayer to Metal-Interlayer-GaAs Contact Structure," ECS Transactions, vol. 72, no. 4, pp. 321-323, 2016.
    [73] H.-K. Kim, K.-K. Kim, S.-J. Park, T.-Y. Seong, and I. Adesida, "Formation of low resistance nonalloyed Al/Pt ohmic contacts on n-type ZnO epitaxial layer," Journal of applied physics, vol. 94, no. 6, pp. 4225-4227, 2003.
    [74] A. Yu, "Electron tunneling and contact resistance of metal-silicon contact barriers," Solid-state electronics, vol. 13, no. 2, pp. 239-247, 1970.
    [75] N. Alimardani and J. Conley, "Step tunneling enhanced asymmetry in metal-insulator-insulator-metal (MIIM) diodes for rectenna applications," in Next Generation (Nano) Photonic and Cell Technologies for Solar Energy Conversion IV, 2013, vol. 8824: International Society for Optics and Photonics, p. 88240S.
    [76] T. Kawamura et al., "1.5-V operating fully-depleted amorphous oxide thin film transistors achieved by 63-mV/dec subthreshold slope," in 2008 IEEE International Electron Devices Meeting, 2008: IEEE, pp. 1-4.
    [77] Y. Kang et al., "Microscopic origin of universal quasilinear band structures of transparent conducting oxides," Physical review letters, vol. 108, no. 19, p. 196404, 2012.
    [78] D. Hong, G. Yerubandi, H. Chiang, M. Spiegelberg, and J. Wager, "Electrical modeling of thin-film transistors," Critical Reviews in Solid State and Materials Sciences, vol. 33, no. 2, pp. 101-132, 2008.
    [79] D. K. Schroder, Semiconductor material and device characterization. John Wiley & Sons, 2006.
    [80] A. C. Tickle, "Thin-film transistors: a new approach to microelectronics," 1969.
    [81] S. J. Yun, J. B. Koo, J. W. Lim, and S. H. Kim, "Pentacene-thin film transistors with ZrO2 gate dielectric layers deposited by plasma-enhanced atomic layer deposition," Electrochemical and solid-state letters, vol. 10, no. 3, pp. H90-H93, 2007.
    [82] C. Crowell and V. Rideout, "Normalized thermionic-field (TF) emission in metal-semiconductor (Schottky) barriers," Solid-State Electronics, vol. 12, no. 2, pp. 89-105, 1969.
    [83] E. H. Rhoderick, "Metal-semiconductor contacts," IEE Proceedings I-Solid-State and Electron Devices, vol. 129, no. 1, p. 1, 1982.
    [84] J. J. Yang, M. D. Pickett, X. Li, D. A. Ohlberg, D. R. Stewart, and R. S. Williams, "Memristive switching mechanism for metal/oxide/metal nanodevices," Nature nanotechnology, vol. 3, no. 7, p. 429, 2008.
    [85] H. Umezawa et al., "Leakage current analysis of diamond Schottky barrier diode," Applied physics letters, vol. 90, no. 7, p. 073506, 2007.
    [86] Y.-K. Choi et al., "Ultra-thin body SOI MOSFET for deep-sub-tenth micron era," in International Electron Devices Meeting 1999. Technical Digest (Cat. No. 99CH36318), 1999: IEEE, pp. 919-921.
    [87] P. N. Vinod, "Specific contact resistance measurements of the screen-printed Ag thick film contacts in the silicon solar cells by three-point probe methodology and TLM method," Journal of Materials Science: Materials in Electronics, vol. 22, no. 9, pp. 1248-1257, 2011, doi: 10.1007/s10854-011-0295-z.
    [88] A. Weimar, A. Lell, G. Brüderl, S. Bader, and V. Härle, "Investigation of Low‐Resistance Metal Contacts on p‐Type GaN Using the Linear and Circular Transmission Line Method," physica status solidi (a), vol. 183, no. 1, pp. 169-175, 2001.
    [89] Y. Chen, M. Ogura, S. Yamasaki, and H. Okushi, "Investigation of specific contact resistance of ohmic contacts to B-doped homoepitaxial diamond using transmission line model," Diamond and related materials, vol. 13, no. 11-12, pp. 2121-2124, 2004.
    [90] J. P. Campbell, K. P. Cheung, J. S. Suehle, and A. Oates, "A simple series resistance extraction methodology for advanced CMOS devices," IEEE Electron Device Letters, vol. 32, no. 8, pp. 1047-1049, 2011.
    [91] P. K. Park and S.-W. Kang, "Enhancement of dielectric constant in Hf O 2 thin films by the addition of Al 2 O 3," Applied physics letters, vol. 89, no. 19, p. 192905, 2006.
    [92] H. Jeong, H.-S. Jeong, D.-H. Kim, C.-Y. Jeong, and H.-I. Kwon, "Effects of post-deposition thermal annealing temperature on electrical properties of ZnON thin-film transistors," IEEE Electron Device Letters, vol. 37, no. 6, pp. 747-750, 2016.
    [93] J. Van Heerden and R. Swanepoel, "XRD analysis of ZnO thin films prepared by spray pyrolysis," Thin Solid Films, vol. 299, no. 1-2, pp. 72-77, 1997.
    [94] S. T. Tan et al., "Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition," Journal of Applied Physics, vol. 98, no. 1, p. 013505, 2005.
    [95] D.-S. Kim et al., "Effect of deposition temperature on the properties of Al-doped ZnO films prepared by pulsed DC magnetron sputtering for transparent electrodes in thin-film solar cells," Applied Surface Science, vol. 259, pp. 596-599, 2012.
    [96] Y.-S. Liu et al., "Mechanism of conductivity degradation of AZO thin film in high humidity ambient," Applied Surface Science, vol. 282, pp. 32-37, 2013.
    [97] M. Chen et al., "X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films," Applied Surface Science, vol. 158, no. 1-2, pp. 134-140, 2000.
    [98] L. Li, L. Fang, X. J. Zhou, Z. Y. Liu, L. Zhao, and S. Jiang, "X-ray photoelectron spectroscopy study and thermoelectric properties of Al-doped ZnO thin films," Journal of Electron Spectroscopy and Related Phenomena, vol. 173, no. 1, pp. 7-11, 2009.
    [99] T. Sham and M. Lazarus, "X-ray photoelectron spectroscopy (XPS) studies of clean and hydrated TiO2 (rutile) surfaces," Chemical Physics Letters, vol. 68, no. 2-3, pp. 426-432, 1979.
    [100] S.-S. Lin and J.-L. Huang, "Effect of thickness on the structural and optical properties of ZnO films by rf magnetron sputtering," Surface and Coatings Technology, vol. 185, no. 2-3, pp. 222-227, 2004.
    [101] G. Fang, D. Li, and B. L. Yao, "Effect of vacuum annealing on the properties of transparent conductive AZO thin films prepared by dc magnetron sputtering," Physica status solidi (a), vol. 193, no. 1, pp. 139-152, 2002.
    [102] S. Bandyopadhyay and A. Pal, "The effect of grain boundary scattering on the electron transport of aluminium films," Journal of Physics D: Applied Physics, vol. 12, no. 6, p. 953, 1979.
    [103] U. Roy et al., "Novel ZnO: Al contacts to CdZnTe for X-and gamma-ray detectors," Scientific reports, vol. 6, p. 26384, 2016.
    [104] X. Jiang, F. Wong, M. Fung, and S. Lee, "Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices," Applied Physics Letters, vol. 83, no. 9, pp. 1875-1877, 2003.
    [105] J. Park et al., "Effects of Controlling the AZO Thin Film's Optical Band Gap on AZO/MEH-PPV Devices with Buffer Layer," International Journal of Photoenergy, vol. 2012, 2012.
    [106] R. Wendt, K. Ellmer, and K. Wiesemann, "Thermal power at a substrate during ZnO: Al thin film deposition in a planar magnetron sputtering system," Journal of applied physics, vol. 82, no. 5, pp. 2115-2122, 1997.
    [107] B. Luther, S. E. Mohney, T. N. Jackson, M. Asif Khan, Q. Chen, and J. Yang, "Investigation of the mechanism for Ohmic contact formation in Al and Ti/Al contacts to n-type GaN," Applied physics letters, vol. 70, no. 1, pp. 57-59, 1997.
    [108] M. Ryu et al., "High mobility zinc oxynitride-TFT with operation stability under light-illuminated bias-stress conditions for large area and high resolution display applications," in 2012 International Electron Devices Meeting, 2012: IEEE, pp. 5.6. 1-5.6. 3.
    [109] C.-I. Kuan, H.-C. Lin, and P.-W. Li, "Improving the performance of ZnO thin-film transistors with ZnON source/drain contacts," IEEE Transactions on Electron Devices, vol. 64, no. 7, pp. 2849-2853, 2017.
    [110] C.-I. Kuan, H.-C. Lin, P.-W. Li, and T.-Y. Huang, "Short-channel BEOL ZnON thin-film transistors with superior mobility performance," in 2016 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), 2016: IEEE, pp. 1-2.

    下載圖示 校內:2024-08-20公開
    校外:2024-08-20公開
    QR CODE