簡易檢索 / 詳目顯示

研究生: 曾若綺
Tseng, Ruo-Qi
論文名稱: 添加孔隙材料對酚醛發泡板材耐燃特性的影響
The effect of adding porous materials on the fire resistance of phenolic foam board
指導教授: 林大惠
Lin, Ta-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 85
中文關鍵詞: 氣凝膠玻化微珠耐燃酚醛發泡板
外文關鍵詞: aerogel, hollow glass microspheres, fire resistance, phenolic foam board
相關次數: 點閱:204下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於火災事故頻傳,造成人員傷亡及財務損失,發展防火材料一直是值得關注的議題。然而如何在提升火場性能的前提下,兼顧節能減碳的環保概念,是當前需要思考的課題。因此具備保溫功能及耐燃能力的酚醛發泡材料逐漸被重視。本研究將不同粒徑及重量百分濃度(1%~5%)的二氧化矽氣凝膠粉體作為填料加入熱固型酚醛中,製作成酚醛發泡板材,並以主成分為二氧化矽的玻化微珠作為填料進行實驗結果的比較。本研究之目的在利用多孔二氧化矽填料低熱傳的特性,降低熱在酚醛發泡板材內部的熱傳率,進而減緩發泡板的分解以提升酚醛發泡板材的耐燃性能。此外,也觀察添加不同大小粒徑及含量的填料對耐燃性能的影響。
    根據熱傳導及熱重分析的結果顯示,添加小粒徑多孔粉體的酚醛發泡板可得到比純酚醛發泡板更佳的隔熱性質及熱穩定性;然而,過量的填料會導致發泡結構不穩定。以OM、SEM及EDS觀察到氣凝膠在酚醛內部孔洞有被酚醛包覆的型態且為不均勻分布於酚醛發泡板,以解釋實驗曲線出現的部分不規律現象。此外,圓錐量熱儀的結果顯示,由於填料添加過多及脫模劑塗佈過多的影響,導致大部分的試片燒穿及總熱釋放過量的現象,然而試驗結果證實添加適量的多孔二氧化矽填料確實可以提升酚醛發泡板耐燃性能使其通過耐燃一級的測試。

    The development of fire resistant materials is important with regard to reducing the loss of human life and property due to fires. Phenolic foam board (PF) has good thermal insulation properties and is thus widely used for this purpose, and it also has exceptional fire performance.
    In this study, the author investigated the effects on the thermal and fire resistance of PF (phenolic foam board) with various particle sizes and content (1wt.%-5wt.%) of SiO2 aerogel, and hollow glass microspheres were also used to make a comparison. It was expected that the fire resistance of PF would be improved by adding these fillers, which provide thermal insulation. It was projected that the heat transfer of PF from the heat source would be reduced, thus causing the decomposition of phenolic foam board to slow down.
    The effect of adding porous silica on the thermal conductivity and stability of PF was obvious. The results showed that smaller particle sizes of porous materials can improve the thermal insulation and stability of PF. However, the use of excess fillers was found to damage the structure of PF. The SEM and EDS results showed that the distribution of aerogel within the PF was not uniform, and some aerogel pores were coated with phenolic resin, which explained some irregular curves observed during testing. In addition, the results of a cone calorimeter analysis indicated that excess fillers and release agent caused burn through and excess total heat release. However, the results also showed that adding proper amounts of porous silica can improve the fire performance of PF, leading to achieving flammability level I.

    1. Introduction……………………………………………………………….1 2. Literature Review………………………………………………………… 5 2.1 Fire performance of material 5 2.2 Fire prevention 5 2.3 Flame retardant 7 2.4 Thermal insulation material 10 2.5 Phenolic foam board fire performance 11 3. Experimental Apparatus and Methods 15 3.1 Materials 15 3.2 Fabrication of phenolic foam board 15 3.3 Methods 18 3.3.1 Thermal conductivity analysis [32] 19 3.3.2 Image observation [33][34] 20 3.3.3 Energy dispersive spectroscopy analysis (EDS) 23 3.3.4 Thermogravimetric analysis [37] 26 3.3.5 Cone calorimeter method [9][39] 27 4. Results and Discussion…………………………………………………..30 4.1 The effect of fillers on phenolic foaming behavior 30 4.2 Thermal conductivity analysis 33 4.3 Surface morphology 35 4.4 Distribution of aerogel on phenolic foam board 37 4.5 Thermogravimetric analysis 40 4.6 Cone calorimeter method (the first time) 46 4.6.1 Char residue 46 4.6.2 Heat release rate 50 4.6.3 Photograph of phenolic foam board 59 4.6.4 Summary 70 4.7 Cone calorimeter method (the second time) 71 4.7.1 Char residue 71 4.7.2 Heat release rate 72 4.7.3 Photograph of phenolic foam board 74 4.7.4 Summary 75 5. Conclusion……………………………………………………………….77 6. References……………………………………………………………….79 List of publications…………………………………………………………..85

    [1] 郭文法,高分子材料在室內裝潢上的應用,工業材料雜誌,Vol.113,pp.101-109,1996。
    [2] Lee, S. K., Lo, W. H., Ho, M. C. and Lin, T. H., “Estimation of optimal water flow rate of a steel roller shutter with water film cooling system,” Advanced Materials Research, Vol. 905, pp. 263-267, 2014.
    [3] 內政部消防署, “104 年全國火災統計分析, ” Posted on Jan. 20th, 2016, Website at: http://www.nfa.gov.tw/main/List.aspx?ID=&MenuID
    =342
    [4] Friedlingstein, P., Andrew, R. M., Rogelj, J., Peters, G. P., Canadell, J. G., Knutti, R., Luderer, G., Raupach, M. R., Schaeffer, M., van Vuuren, D. P. and Quéré, C. L., Persistent growth of CO2 emissions and implications for reaching climate targets, Nature Geoscience, Vol. 7, pp. 709–715, 2014.
    [5] Tettey, U. Y. A., Dodoo, A. and Gustavsson, L., Effects of different insulation materials on primary energy and CO2 emission of a multi-storey residential building, Energy and Buildings, Vol. 82, pp. 369-377, 2014.
    [6] Pilato, L., Phenolic resins: a century of progress, Springer, Berlin, pp. 189-208, 2010.
    [7] Chiu, H. T., Chiu, S. H., Jeng, R. E. and Chung, J. S., A study of the combustion and fire-retardance behaviour of unsaturated polyester/phenolic resin blends, Polymer, Vol. 70, pp.505-514, 2000.
    [8] Laoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta, J. M. and Dubois, Ph., New prospects in flame retardant polymer materials: From fundamentals to nanocomposites, Materials Science and Engineering R, Vol. 63, pp. 100-125, 2009.
    [9] Chen, F. C., The estimate of the heat release rate curve under specific irradiance in a cone calorimeter based on known data (Master’s thesis), National Kaohsiung First University of Science and Technology, 2008。
    [10] 陳弘毅,消防學,鼎茂圖書,台北,第四版,2006。
    [11] Zhou, B. X., Application and Design Requirements of Fire Windows in Buildings, Procedia Engineering, Vol.71, pp. 286 – 290, 2014.
    [12] Irvine, D. J., McCluskey, J. A. and Robinson, I. M., Fire hazards and some common polymers, Polymer Degradation and Stability, Vol. 67, pp. 383-396, 2000.
    [13] Wang, P., Li N., Zhao, C. S., Wu, L. Y. and Han, G. B., A Phase Change Storage Material that May Be Used in the Fire Resistance of Building Structure, Procedia Engineering, Vol. 71, pp. 261-264, 2014.
    [14] Bai, Z., Song, L., Hu, Y., Gong, X. and Yuen, R. K. K., Investigation on flame retardancy, combustion and pyrolysis behavior of flame retarded unsaturated polyester resin with a star-shaped phosphorus-containing compound, Journal of Analytical and Applied Pyrolysis, Vol. 105, pp.317-326, 2014.
    [15] Sun, G., Liu, L., Wang, J., Wang, H., Wang, W. and Han, S., Effects of hydrotalcites and tris (1-chloro-2-propyl) phosphate on thermal stability, cellular structure and fire resistance of isocyanate- based polyimide foams, Polymer Degradation and Stability, Vol. 115, pp.1-15, 2015
    [16] Wang, W., Pan, H., Shi, Y., Pan, Y., Yang, W. and Liew, K. M., Song, L., Hu, Y., Fabrication of LDH nanosheets on β-FeOOH rods and applications for improving the fire safety of epoxy resin, Composites Part A Applied Science and Manufacturing, Vol. 80, pp. 259-269, 2016.
    [17] Klempner, D. and Frisch, K. C., Handbook of Polymeric Foams and Foam Technology, Hanser, New York, pp.376-404, 1991.
    [18] Binici, H., Eken, M., Dolaz, M., Aksogan, O. and Kara, M., An environmentally friendly thermal insulation material from sunflower stalk, textile waste and stubble fibres, Construction and Building Materials, Vol. 51, pp. 24-23, 2014.
    [19] Wei, K., Lv, C., Chen, M., Zhou, X., Dai, Z. and Shen, D., Development and performance evaluation of a new thermal insulation material from rice straw using high frequency hot-pressing, Energy and Buildings, Vol. 87, pp. 116-122, 2015.
    [20] Panyakaew, S. and Fotios, S., New thermal insulation boards made from coconut husk and bagasse, Energy and Buildings, Vol. 43, pp. 1732-1739, 2011.
    [21] Zhang, R., Feng, J., Cheng, X., Gong, L., Li, Y. and Zhang, H., Porous thermal insulation materials derived from fly ash using a foaming and slip casting method, Energy and Buildings, Vol. 81, pp. 262-267, 2014.
    [22] Pilato, L., Phenolic resins: 100 years and still going strong, Reactive & Functional Polymers, Vol. 73, pp. 270-277, 2013.
    [23] Kandola, B. K., Krishnan, L. and Ebdon, J. R., Blends of unsaturated polyester and phenolic resins for application as fire-resistant matrices in fibre-reinforced composites: Effects of added flame retardants, Polymer Degradation and Stability, Vol. 106, pp. 129-137, 2014.
    [24] Kandola, B. K., Krishnan, L., Deli D. and Ebdon, J. R., Blends of unsaturated polyester and phenolic resins for application as fire-resistant matrices in fibre-reinforced composites. Part 2: Effects of resin structure, compatibility and composition on fire performance, Polymer Degradation and Stability, Vol. 113, pp. 154-167, 2015.
    [25] Fanucci, J. P., Thermal response of radiantly heated Kevlar and graphite/epoxy composites, Journal of Composite Materials, Vol. 21, pp. 129-139, 1987.
    [26] Feih, S., Mathys, Z., Mathys, G., Gibson, A. G., Robinson, M. and Mouritz, A. P., Influence of water content on failure of phenolic composites in fire, Polymer, Vol. 70, pp.505-514, 2008.
    [27] Bouslah, M., Salvia, M., Deschères, I., Berthel, B. and Benayoun, S., Effect of microsphere content on fire performance and thermomechanical properties of phenolic resole syntactic foam composites, Paper presented at the 19TH International Conference on Composite Materials, Canada, Montréal, 2013.
    [28] Gurav, J. L. , Jung, I. K. , Park, H. H. , Kang, E. S. and Nadargi, D. Y., Silica Aerogel: Synthesis and Applications, Journal of Nanomaterials, Vol. 2010, 2010.
    [29] Noparvar-Qarebagh, A., Roghani-Mamaqani, H. and Salami-Kalajahi, M., Novolac phenolic resin and graphene aerogel organic-inorganic nanohybrids: High carbon yields by resin modification and its incorporation into aerogel network, Polymer Degradation and Stability, Vol. 124, pp. 1-14, 2016.
    [30] Noparvar-Qarebagh, A., Roghani-Mamaqani, H. and Salami-Kalajahi, M., Organic-inorganic nanohybrids of novolac phenolic resin and carbonanotube: High carbon yields by using carbon nanotube aerogel and resin incorporation into aerogel network, Microporous and Mesoporous Materials, Vol. 224, pp.58-67, 2016.
    [31] CN 103865097 A, “Phenolic foam plate containing nanometer aerogel and production method of phenolic foam plate,” China, Shandong Shengquan Chemical Industry, 2014.
    [32] TCi operator manual, C-Therm Technologies Ltd., 2013.
    [33] Brandon, D. and Kaplan, W. D., Microstructural Characterization of Materials, John Wily & Sons, UK, pp.15, 261-326, 2008.
    [34] 陳建淼、洪連輝,穿透式電子顯微鏡, Posted on Sep. 9th, 2009, Website at: http://highscope.ch.ntu.edu.tw/wordpress/?p=1599
    [35] Landrock, A. H., Handbook of plastic foams, Noyes, New Jersey, pp. 183-190, 1995.
    [36] Aegerter, M. A., Leventis, N., and Koebel M. M., Aerogels handbook, Springer, New York, pp. 29-55, p. 620, 2011.
    [37] Cassel, B. and Menard, K. P., Use of the STA 8000 Simultaneous Thermal Analyzer for Melt Analysis of Alloys, PerkinElmer, USA, 2012.
    [38] Fang, H., Hailei, Z., Xuanhui, Q., Cuijuan, Z. and Weihua, Q., Modified aging process for silica aerogel, Journal of Materials Processing Technology, Vol. 209, pp. 1621-1626, 2009.
    [39] CNS14705-1, “Method of test for heat release rate for building materials-Part 1: Cone calorimeter method,” Taipei: Bureau of Standards, Metrology & Inspection, M.O.E.A., ROC., 2013.
    [40] Riegel, B., Hartmann, I., Kiefer, W., Groβ, J. and Fricke, J., Raman spectroscopy on silica aerogels, Journal of Non-Crystalline Solids, Vol. 211, pp. 294-298, 1997.
    [41] Mahadik, D. B., Rao, A. V., Kumar, R., Ingale, S. V., Wagh, P. B. and Gupta, S. C., Reduction of processing time by mechanical shaking of the ambient pressure dried TEOS based silica aerogel granules, Journal of Porous Materials, Vol. 19, pp. 87-94, 2011.
    [42] Bhagata, S. D., Kima, Y. H., Suha, K. H., Ahnb, Y. S., Yeob, J. G. and Hanc, J. H., Superhydrophobic silica aerogel powders with simultaneous surface modification, solvent exchange and sodium ion removal from hydrogels, Microporous and Mesoporous Materials, Vol. 112, pp. 504-509, 2008.
    [43] Moreno-Castilla, C. and Maldonado-Ho´dar, F. J., Carbon aerogels for catalysis applications: An overview, Carbon, Vol. 43, pp. 455–465, 2005.
    [44] Hrubesh, L. W., Coronado, P. R. and Satcher, Jr. J. H., Solvent removal from water with hydrophobic aerogels, Journal of Non-Crystalline Solids, Vol. 285, pp. 328-332, 2001.
    [45] Liu, X., Li, H., Ma, T. and Li, K., Preparation of phenolic hollow microspheres via in situ polymerization, Polymer International, Vol. 58, pp. 465-468, 2009.
    [46] Liu, W., Yin, M., Feng, X. R., Li, J., Ma, H. B., Thermal, morphological and dielectric properties of epoxy resin composites reinforced by hollow glass microspheres, Journal of Southwest University of Science and Technology, Vol. 29, No.1, pp. 13-19, 2014.
    [47] Abd El-Wahab, H., Abd El-Fattah, M., Ahmed, A. H., Elhenawy, A. A. and Alian, N. A., Synthesis and characterization of some arylhydrazone ligand and its metal complexes and their potential application as flame retardant and antimicrobial additives in polyurethane for surface coating, Journal of Organometallic Chemistry, Vol. 791, pp. 99-106.
    [48] 洪純仁、酚醛樹脂,復文書局,pp. 225-267,1998。
    [49] 黃髮榮、焦楊聲,酚醛樹脂及其應用,化學工業出版社,p. 334,2003。

    下載圖示 校內:2019-07-01公開
    校外:2020-09-10公開
    QR CODE