| 研究生: |
鄭文偉 Cheng, Wen-Wei |
|---|---|
| 論文名稱: |
添加合金元素對鈦或鈦合金鑄造性及性質研究 Effects of Alloying Elements on Castability and Properties of Titanium or Titanium Alloys |
| 指導教授: |
陳瑾惠
Chern Lin, Jiin-Huey 朱建平 Ju, Chien-Ping |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 218 |
| 中文關鍵詞: | 鑄造性 、鈦 、鑄造 、機械性質 、鈦合金 |
| 外文關鍵詞: | Castability, Mechanical property, Casting, Titanium alloy, Titanium |
| 相關次數: | 點閱:76 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈦及鈦合金為航太、化學及能源工業的骨幹材料,也是極具潛力的生醫材料。這是由於鈦材料具備高比強度、優異的機械性質、抗腐蝕性、良好電磁遮蔽性、不具磁性及抗低溫的特性。然而,製造鈦合金零組件所需的高成本卻限制了鈦材料的應用。因此,發展淨形(net shape)或近淨形(near net shape)技術,用以提高鈦材料或組件的使用。目前精密鑄造是發展最完全,也是使用最廣的淨形技術。鈦鑄造的另一個特色是鈦的鑄件在各方面的性質可以與鍛造件匹敵,因此,鈦鑄造技術的發展有其必要性。
鑄造技術需要克服的是各種成因的鑄造缺陷,評估鑄造成功與否的指標即是鑄造性。在諸多影響鑄造性的因素中,本研究選擇以固定製程來控制外秉因素及鑄模、設備等因素,從而瞭解添加微量元素對鑄造性的影響。本研究並且探討添加微量元素對結構、組織或機械性質的影響,俾使所選擇的添加元素對商業用純鈦或鈦合金的製程和性質有整體的助益。
結果顯示,微量的合金元素添加到商業用純鈦時,部分元素造成鈦的鑄造性增加,部分元素則使鈦的鑄造性減低,視添加的元素種類而定。鑄造性的總體趨勢與表面能有關,特別是針狀模更明顯。在添加量的影響方面則以凝固機構(樹枝狀凝固)為主導。因此,添加元素對鑄造性表現的影響和差異是由自由能降低與樹枝狀凝固的競爭、妥協的結果。微量添加X元素(1wt%)對Ti-7.5Mo合金鑄造性的改善(34%)比添加X元素於商業用純鈦明顯。在Ti-6Al-4V的鑄造性方面,添加1wt%的X元素可以大幅增加Ti-6Al-4V合金的鑄造性達30%。商業或準商業鈦合金添加1wt%X元素大幅改善了所有測試的鈦合金的鑄造性,其中以Ti-7.5Mo-Xfe系統的鑄造性改善最為明顯(分別為79%、82%和115%)。
商業用純鈦和所有添加元素的鈦合金鑄造於銅鑄模或石墨模後都有著相同的晶體結構(hcp)。鑄造後的商業用純鈦具有板狀的α’相,當添加合金元素時,所有的鈦合金都具有類似的細微針狀麻田散結構,而且隨著添加量的增加,針狀組織變得更細。Ti-7.5Mo合金為斜方晶α”相。添加1wt%或3wt%的X元素,對Ti-7.5Mo合金的相沒有明顯的影響;添加5wt%的X元素,發現一定量的β相在鑄造過程的快速冷卻中被保留下來。Ti-7.5Mo合金呈現細羽毛狀組織。添加1wt%的X元素,合金仍有相似的組織;添加3wt%和5wt%的X元素,出現β相的晶界。鑄造的Ti-6Al-4V合金為α’相,添加X元素沒有改變Ti-6Al-4V合金的相結構。不論是否添加X元素,Ti-6Al-4V合金的顯微組織都是細針狀的組織。
所有鈦合金的微硬度值比商業用純鈦高很多,而且Ti-Mo系列合金明顯地有特別高的微硬度值。添加X元素對Ti-7.5Mo合金的效應比較不明顯。Ti-6Al-4V合金的微硬度值隨X元素含量的增加逐漸增加。所有鈦合金系統的彎曲強度值皆大於商業用純鈦,Ti-Mo合金系統是所有合金系統中彎曲強度水準最高的。添加合金元素均使鈦的彈性回復角增加,增加幅度約在60~80%, Ti-Mo系統是所有合金系統中彈性回復角最高的(增幅約在150-280%)。添加X元素對Ti-7.5Mo合金對彎曲強度的影響比較不明顯,趨勢類似於微硬度值的結果。Ti-6Al-4V合金的彎曲強度隨著X元素含量增加而上升,彎曲彈性模數也是隨著X元素含量增加而上升。增加X元素添加量(>3wt%)會使Ti-6Al-4V合金的延展性降低。
進行腐蝕性測試的合金系統(Ti-X、Ti-Sn、Ti-Mo和Ti-Nb)都有優異抗腐蝕性。
X元素是本研究選用的添加元素中對商業用純鈦的鑄造性改善最明顯的元素,微量添加(1wt%或以下)於Ti-7.5Mo合金、Ti-6Al-4V合金或其他商業或準商業用的鈦合金時,對鑄造性的改善更為顯著。綜合而言,微量添加X元素於鈦或鈦合金在工業應用上,具有實用的價值,並是可立即應用的。
Due to their high strength-to-weight ratios, excellent mechanical properties and corrosion resistance, titanium and titanium alloys have become one of the backbone materials for many aerospace, energy, sports, marine and chemical applications. Titanium is also finding growing acceptance today for uses medical equipment and implant material, dental (crown and bridge, framework, dental implant, etc.) and orthopedic applications due to its excellent biocompatibility.
Titanium castings are unlike castings of many other metals in that they are equal, or nearly equal, in strength to their wrought counterparts. Fracture toughness and crack-propagation resistance may equal or exceed those of corresponding wrought materials.
The relatively high costs of titanium/titanium alloy products, however, could largely limit their use. This high cost is a result of the high costs of raw material as well as fabrication, particularly the machining process. For example, the raw material of titanium may cost from 3 to 10 times as much as steel or aluminum, and the machining costs for titanium can easily be 10 times as much as that for aluminum. Because of the high machining costs of titanium, a great deal of effort has been devoted to the study of precision casting of titanium.
Nevertheless, titanium is inherently difficult to cast due to its high melting temperature, strong affinity with gases such as oxygen, hydrogen and nitrogen, as well as its high reactivity with most investment materials. These difficulties can more or less affect the castability and mechanical properties of Ti and Ti alloy castings.
The present study is an attempt to improve the castability of titanium through addition of a series of alloying elements into titanium. The effect of the alloying additions on such mechanical properties as bending strength and modulus was also investigated. Along this direction, the research continued to study the effect of bismuth addition (up to 5 wt%) on castability, structure and mechanical properties of c.p. Ti, the most popularly-used Ti-6Al-4V alloy and Ti-7.5Mo alloy.
The results are listed as follows:
1. A minor amount (1 wt%) of alloying element could increase or decrease the castability of titanium, depending on the kind of element added. Among all alloying elements, silver, molybdenum, hafnium, tantalum, tin, lead and X element significantly enhanced the castability of titanium cast in plate copper mold. Additions of silver and X element increased the castability value by 32% and 35%, respectively. When graphite mold was used, the improvement in castability was less significant for most added elements, yet X-doped titanium still exhibited a castability value higher than that of c.p. Ti by 24%.
2. All 17 doped titanium had the same crystal structure (hcp) as that of c.p. Ti, with the only exception of iron-doped titanium, in which a slight amount of phase was retained. Optical microscopy showed that all doped titanium had a fine acicular martensitic type structure. Cast c.p. Ti had a coarser, lath type α’ phase morphology. Addition of X resulted in a finer, acicular morphology.
3. Alloying additions largely increased microhardness of titanium. Molybdenum and manganese-doped titanium had the highest microhardness values (242 and 237 HV, respectively). All other doped titanium had microhardness values in the range of 190-220 HV.
4. Alloying additions significantly increased bending strength of titanium. The largest bending strength was found in molybdenum-doped titanium (1574 MPa), that was roughly double that of c.p. Ti (760 MPa). The bending modulus of titanium, however, was not much affected by alloying additions.
5. With addition of 1wt% alloy element, X and Mo were most effective in enhancing the castability of titanium cast in graphite mold with needle-shaped cavities. Ta, Nb, Zr, Sn and Ag only increased castability slightly. With more alloy elements added, except Hf, the castability values more or less decreased.
6. Addition of up to 5wt% alloy element did not changed XRD pattern of c.p. Ti, indicating that doped X was present primarily in the form of solid solution. Except Ti-Mo system, all Ti alloys with a fine acicular morphology had the same crystal structure (hcp) as that of c.p. Ti with a typical lath type morphology. When 3 wt% or more Mo was added, a finer orthorhombic α" phase was formed. Cross-sectional microscopy and microhardness measurement showed that the acicular structure of Ti alloys was finer near surface, but there was no significant reaction layer or alpha case formed on the surface of c.p. Ti or any Ti alloy.
7. The microhardness and bending strength values of Ti alloys were all higher than those of c.p. Ti. Among all alloys, Ti-Mo system exhibited the highest hardness and strength level. For a certain alloy, the bending strength did not necessarily increase with its alloy content. Except Ti-5Zr and Ti-Mo alloys, the bending moduli of most alloy systems were not much different from that of c.p. Ti. The decreased modulus with Mo content is consistent with XRD and morphological results.
8. All alloys showed an excellent resistance to corrosion in Hanks’ solution at 37°C. Breakdown did not occur to any material even at potentials as high as 2400 mV (SCE).
9. Addition of 1 wt% X increased the cast lengths of Ti-7.5Mo alloy by 34%, respectively. Higher X contents caused castability to decline.
10. Addition of 5wt% X caused some β phase to be retained from high temperature during casting.
11. Cast Ti-7.5Mo alloy exhibited a fine feather-like morphology. Addition of 3wt% or more X revealed high temperature β phase grain boundaries.
12. The X element effect on microhardness of Ti-7.5Mo was less significant.
13. Additions of 1 and 3wt% X increased the bending strength of c.p. Ti by 17 and 50%, respectively. Addition of 5wt% X did not further increase the strength level. The bismuth effect on bending strength of Ti-7.5Mo was less significant.
14. Ti-7.5Mo had a much lower modulus than c.p. Ti. Addition of X did not affect much on modulus.
15. The addition of 1 wt% X in Ti-6Al-4V alloy not only largely enhanced castability, the strength of the alloy was also improved. However, when larger amounts of bismuth were added, the ductility of the alloy decreased. From a practical point of view, the 1X-doped alloy has demonstrated its potential for practical application, especially for casting manufacturing process.
As a summary, X element demonstrated a particularly high potential in enhancing the castability of titanium among all the dopants.
Ageev, N. V. and Petrova, L. A., “Breakdown of the β–Solid Solution in Titanium-Molybdenum Alloys”, Zh. Neorg. Khim., 4, 1924 (1959)
Almquist, P. D., Chan, C. N., Blackman, R. and Kaiser, D. A., “ The Effects of Sprue Number and Position on Titanium Crown Margins”, Dental Materials, 486, 1758 (1991)
Ammen, C. W., The Metalcaster’s Bible, McGraw Hill, PA, USA (1980)
Ankem, S. and Greene, C. A., “Recent Developments in Microstructure/Property Relationships of Beta Titanium Alloys”, Materials Science and Engineering A263, 127-131 (1999)
Baez, R. J., Nonaka, T. and Blackman, R., “ Ti Castability and Surface Characteristics with Three Phosphate Bonded Investments”, Journal Dental Research, 70, 486, Abst.1757 (1991)
Bagariatskii, Y. A., Nosova G. I. and Tagunova, T. V., “Factors in the formation of metastable phases in titanium-base alloys”, Soviet Physics: Doklady English Translation, 3, 1014 (1959)
Bania, P. J., “Beta titanium alloys and their roles in the titanium industry”,
Barreto, M. T., Goldberg, A. J., Nitkin, D. A. and Mumford, G., “Effect of investment on casting high-fusing alloys”, The Journal of Prosthetic Dentistry, 44, 5, 504-507 (1980)
Bastien, P., Armbruster, J. C. and Azou, P., “Flowability and Viscosity”, Trans AFS, 70, 400-409 (1962)
Bergman, M., Ginstrup, O. and Nillson, B., “Potentials of and currents between dental metallic restorations”, Scandinavian Journal of Dental Research, 90, 331 (1982)
Bobyn, J. D., Mortimer, E. S., Glassman, A. H., Engh, C. A., Miller, J. and Brooks, C., “Producing and Avoiding Stress Shielding: Laboratory and Clinical Observation of Noncemented Total Hip Arthroplasty”, Clinical Orthop. Relat. Research, 274, 79-96 (1992)
Bomberger, H.B. and Froes, F. H., “The Melting of Titanium”, Journal of Metals, 36, 12, 39-47 (1984)
Boyer, R. R., "An Overview on the Use of Titanium in the Aerospace Industry", Materials Science and Engineering, A213, 103?114 (1996)
Briggs, C. W., “Fluidity of Metals”, Metals Handbook, ASM International, Metals Park, Ohio (1948)
Campbell, J., “Review of Fluidity Concepts in Casting”, Cast Metals, 7, 4, 227-237 (1994)
Chan, D., Guillory, V., Blackman, R. and Chung, K., “The Effects of Sprue Design on the Roughness and Porosity of Titanium Castings”, The Journal of Prosthetic Dentistry, 78, 4, 400-404 (1997)
Chern Lin, J. H., Moser, J. B., Taira, M. and Greener, E.H., “Cu-Ti, Co-Ti and Ni-Ti Systems: Corrosion and Microhardness”, Journal of Oral Rehabilitation, 17, 383-393 (1990)
Chern-Lin, J. H., Ju, C. P. and Ho, W. F., US patent No. 6409852 (1999)
Collings, E.W. and Ho, J. C., “Physical Properties of Titanium Alloys’, Science Technology Application Titanium, Processing International Conference, Jaffee, R. I., Ed., 331-347 (1970)
Collings, E.W., Physical Metalurgy of Titanium Alloys, ASM International, Metal Park, Ohio (1984)
Curry, C., Fonderie Moderne, 18, 71 (1924)
Cullity, B. D., Elements of X-ray Diffraction, 2nd ed., p340, Addison Wesley (1978)
Davidson, US patent No. 5954724 (1999)
Davis, R., Flower, H. M. and West, D. R. F., “Martensitic Transformations in Ti-Mo Alloys”, Journal of Materials Science, 14, 712-722 (1979)
Dewsnap, N. F. and Devenport, J., “Casting Fluidity of Binary Alloys of Lead with Arsenic, Silver, and Bismuth”, Metal Technology, 475-479 (1977)
Donachie, Jr., M. J., Titanium A Technical Guide, ASM International, Metals Park, Ohio (1988)
Donachie Jr. M. J., Titanium A Technical Guide, ASM International, Metal Park, Ohio (1989)
Emsley, J., The Elements, p. 33, Clarendon press, Oxford, London, UK (1991)
Emsley, J., The Elements, Clarendon press, Oxford, London, UK (1991)
Engh C. A. and Bobyn, J. D., “The Influence of Stem Size and Extent of Porous Coating on Femoral Bone Resorption after Primary Cementless Hip Arthroplasty”, Clinical Ortho. Relat. Research, 231, 7-28 (1988)
Evans, Journal of Research and Development, British Cast Iron Research Association, Research Report 319, Oct. (1951)
Eylon, D. and Froes, F. H., “Titanium Casting- A Review”, Tianium Net Shape Technologies, 155-178, The Metallurgical Society (1984)
Eylon, D., Froes, F. H. and Gardiner, R. W., “Developments in Titanium Alloy Casting Technology”, Journal of Metals, 35, 2, 35-47 (1983)
Fedotov, S.G., Lyasotskaya, V. S., Konstantinov, K. M., Kutsenko, A. A. and Sinodova, E. P., “Phase Transformations in Alloys of the System Titanium- Molybdenum”, Nov. Konstr. Mater.- Titan, Td. Nauch.- Teckh. Soveshch. Met. Metalloved. Primen. Titana, 8th, 37-41, (1972)
Fine, M. E., Meshii, M., and Wayman, C. M., Martensitic Transformation, p67, Academic Press, NY, 1978
Flemings, M. C., Mollard, F. R., Niiyama, E. F. and Tayler, H. F., “Fluidity of Aluminum”, Trans AFS, 70, 1029-1039 (1962)
Flemings, Solidification Processing, p. 219, McGraw Hill, New York (1974)
Flower, H. M., Henry, S. D. and West, D. R. F., “The β⇌α Transformation in Dilute Ti-Mo Alloys”, Journal of Materials Science, 9, 57-64 (1974)
Fontana, M. G., Corrosion Engineering, 3rd ed., p. 493. McGraw-Hill Book Company, New York (1986)
Froes, F. H., “The Eighth World Titanium Conference”, Light Metal Age, 24-33 (1996)
Froes, F. H., “The Eighth World Titanium Conference”, Journal of Metals, 59-61 (1996)
Frueh, C., Poirier, D. R. and Maguire, M. C., “The Effect of Sicilica-Containing Binders on the Titanium/Face Coat Reaction”, Metallurgical and Materials Transactions B, 28B, 919-926 (1997)
Goodway, M., “History of Casting”, Metals Handbook, 9th ed., Vol. 15, ASM International, Metal Park, Ohio (1985)
Goodway, “History of Casting”, Metals Handbook, 9th ed., vol.15, 15-23, ASM International, Metal Park, Ohio (1985)
Gorynin, I. V., "Titanium Alloys for Marine Application", Materials Science and Engineering, A263, 112?116 (1999)
Grossley, F. A., U.S. Patent No. 3,986,868 (Oct. 19, 1976)
Guggenheim, E. A., Journal of Chemical Physics, 13, 253 (1945)
Guha, A., Metals Handbook, 9th ed., Vol. 8, p. 133?136 ASM International, Metals Park, Ohio (1985)
Ghibert, J. Ph., Derep, J. L. andServant, C., in Vassel, A., Eylon, D. andCombres, Y. (Eds.), Les Alliages de Titane Beta, Société Francaise de Métallurgie et de Matériaux, 197-204 (1994)
Guillet, L. and Portevin, A., “Influence De la Composition Chimique des Alliages sur l’aptitude à l’obtention de pieces moulées”, Reference to A. Portevin, Lecons à la l’École Superieure de Fonderie, 1924; Comptes Rendus de l’Academie des sciences, 183, 634-636 (1926)
Guseva, L. N. and Egiz, I. V., “Metastable Phase Diagram of High-Purity Titanium-Molybdenum Alloys”, Metalloved. Term. Orab. Met., 4, 71-72 (1974)
Hajra, J. P., Lee, H. K. and Frohberg, M. G., “Calculation of Surface Tension of Liquid Binary Systems from the Data of the Pure Components and the Thermodynamic Infinite Dilution Values”, Z. Metallkd., 82, 8, 603-608 (1991)
Heine, H. J., “Casting Nonferrous Alloys in Metal Molds and Dies”, Fondry management and technology, 22-28 (1989)
Heine, H. J., “Titanium – A Space Age Metal”, Foundry management and Technology, 46-50, 100 (1993)
Hickman, B. S., “The Formation of Omega Phase in Titanium and Zirconium Alloys: A Review”, Journal of Materials Science, 4, 554-563 (1969)
Hirano, S., Tesk, J. A., Hinman, R. W., Argentar, H. and Gregory, T. M., “Casting of Dental Alloys: Mold and Alloy Temperature Effects”, Dental Materials, 3, 307-314 (1987)
Hiratsuka, S., Niyama, E., Horie, H., Kowata, T. and Nakamura, M., “Fluidity and Solidification Microstructure of Flake Graphite Cast Iron in Thin Sections”, Cast Metals, 7, 1, 57-62 (1994)
Hlinka, J. W., Paschkis, V. and Puhr, F. S., “How Much Superheat is Lost in the Runner”, 69, 527-534 (1961)
Horton, R. A., “Investment casting”, Metals Handbook, 9th ed., Vol. 15, ASM International, Metal Park, Ohio (1985)
Howard, W. S., Newman, S. M. and Nunez, L., “Castability of Low Gold Content Alloys”, Journal of Dental Research, 59, 5, 824-830 (1980)
Howe, J. M., Interfaces in Materials , John Wiley & Sons, Inc., New York, USA (1997)
Howe, J. M., in Proceeding of the International Conference on Martensitic Transformations (ICOMAT-92), Wayman, C. M. and Perkins, J., Ed., Monterey Institute of Advanced Studies, Carmel, CA (1993), p. 185
Ho, W. F., Ju, C. P. and Lin, J. H. Chern, “Structure and Properties of Cast Binary Ti-Mo Alloys”, Biomaterials, 20, 2115- 2122 (1999)
Ida, K., Tsutsumi, S., Takeuchi, M. and Togaya, T., “A New Dental Casting Machine Utilizing Argon Arc Fusing and Argon Gas Pressing”, Sep. (1979)
Jian’guo, L., Rare Metals, 10, 4, 255- (1991)
Kasemo, B. and Lausmaa, J., “Metal Selection and Surface Characteristics”, Tissue-Integrated Prostheses, Edit by Branemark, P. I., Zarb, G. A. and Albrektsson, T., 101-102, Quintessence Publishing Co. Inc., Chicago (1985)
Kihlstadius, D., “Rammed Graphite Molds”, Metals Handbook, 9th ed., Vol. 15, ASM International, Metal Park, Ohio (1985)
Kolachev, B. A., Mamonova, F. S. and Lyasotskaya, V. S., “Structure of Quenched Alloys of the Titanium-Molybdenum System”, Izv. Tsvetn. Metall., 6, 130-133 (1975)
Krynitsky, A. I., “Progress Made in Fluidity Testing of Molten Metals During the Last Ten Years”, Trans AFS, 61, 399-410 (1953)
Kuroda, D., Niinomi, M., Morinaga, M., Kato, Y. and Yashiro, T., “Design and Mechanical Properties of New β Type Titanium Alloys for Implant materials”, Materials Science and Engineering, A243, 244-249 (1998)
Lautenschlager, E. P. and Monaghan, P., “Titanium and Titanium Alloys as Dental Materials”, International Dental Journal, 43, 245-253 (1993)
Lee, C. M., Ju, C.P. and Chern Lin, J. H. “Structure-Property Relationship of Cast Ti-Mo-Ta Alloys”, Journal of Oral Rehabilitation, 29, 000 (2002)
Leibovitch, Ch., Gartstein, E. and Rabinkin, A., “The Structural Stability and Superconductivity of Ti-Mo Alloys Under Pressure. Part I. Structure Stability”, Z. Metallkd., 71, 438-447 (1980)
Long, M. and Rack, H. J., “Titanium Alloys in Total Joint Replacement― a Materials Science Perspective”, Biomaterials, 19, 1621-1639 (1998)
Loper, Jr., C. R. and Prucha,T. E., “Fed Metal Transfer in Al-Cu-Si Alloys”,
Loper, Jr. C. R. and Prucha, T. E., “Fed Metal Transfer in Al-Cu-Si Alloys, Trans AFS, 165, 845-853 (1990)
Margolin, H. and Nielsen, J. P., “Titanium Metallurgy”, Modern Materials, Advances in Development and Application, Hausner, H. H., ed., Vol.2, Academic Press, 225-325 (1960)
McLachan, D., Acta Metallurgy, 5, 111 (1957)
Mishra, A. K., Davison, J. A., Kovacs, P. and Poggie, R. A., “Ti-13Nb-13Zr: A New Low Modulus, High Strength, Corrosion Resistant Near-Beta Alloy for Orthopaedic Implants”, Beta Titanium Alloys in the 1990’s, TMS of AIME, 61-72 (1993)
Miyazaki, T., "Casting of Titanium: Mold Materials", The Third International Symposium on Titanium in Dentistry, Leura, New South Wales, Australia, August 29?31, 31?38 (1995)
Molchanova, E. K., Phase Diagrams of Titanium Alloys, Israel Program for Scientific Translations, Jerusalem (1965)
Moldenke, Principles of Iron Founding, McGraw-Hill, New York (1917)
Mollard, F. R., Flemings, M. C. and Niyama, E. F., “Alumium Fluidity in Casting”, Journal of Metals, 34-37 (1987)
Morniroli, J. P. and Gantois, M., “Formation Conditions for the Omega Phase of Titanium-Niobium and Titanium-Molybdenum Alloys”, Mem. Sci. Rev. Met., 70, 11, 831-842, (1973)
Muller, H. J. and Fan, P. L., “Standard Air Permeabilities of Investment Materials”, Journal of Dental Research, 69, 368, Abst.2074, 1990a
Muller, H. J., Giuseppetti, A. A. and Wateratrat, R. M., “Phosphate-Bonded Investment Materials for Titanium Casting”, Journal of Dental Research, 69, 367, Abst.2072, 1990b
Muller, H. J. and Waterstrat, R. M., “ Phosphate-Bonded Investment Materials for Titanium Casting”, Journal Dental Research, 69, 367, Abst. 2072, 1990b
Murr, L. E., Interfacial Phenomena in Metals and Alloys, Addison-Wesley Publishing Company, Massachusetts, USA (1975)
Murray, J. L., Phase Diagrams of Binary Titanium Alloys, Vol. 15, ASM International, Metals Park, Ohio (1987)
Newman, J. R., Eylon, D. and Throne, J. K., “Titanium and Titanium Alloys”, Metals Handbook, 9th ed., Vol. 15, ASM International, Metals Park, Ohio (1985)
Niesse, J. E., Flemings, M. C. and Taylor, H. F., “Application of Theory in Understanding Fluidity of Metals”, Trans AFS, 67, 685-796 (1959)
Niinomi, M., “Recent Developments in Japanese Titanium Research and Development”, Journal of Metals, 55-57 (1996)
Niinomi, M., “Mechanical Properties of Biomedical Titanium Alloys”, Materials Science and Engineering, A243, 231-236 (1998)
Nishiyama, Z., Martensitic Transformation, Academic Press, New York (1978)
Okazaki, Y., Ito, Y., Ito, A. and Tateshi, T., “Effect of Alloying Elements on Mechanical Properties of Titanium Alloys for Medical Implants”, Materials Transactions, JIM, 34, 12, 1217-1222 (1993)
Ouchi, C., Iizumi, H. and Mitao, S., “Effects of Ultra-high Purification and Addition of Interstitial Elements on Properties of Pure Titanium and Titanium Alloy”, Materials Science and Engineering, A243, 186-195 (1998)
Overbury, S. H., Bertrand, P. A. and Somorjai, G. A., “The Surface Composition of Binary Systems. Prediction of Surface Phase Diagrams of Sloid Solutions”, Chemical Reviews, 75, 5, 547-560 (1975)
Papworth, A. and Fox, P., “The Disruption of Oxide Defects within Aluminium Alloy Castings by the Addition of Bismuth”, Materials Science and Technology, 17, (1996)
Papworth, A. and Fox, P., “The Disruption of Oxide Defects within Aluminium Alloy Castings by the Addition of Bismuth”, Materials Letters, 35, 202-206 (1998)
Porter, L. F. and Rosenthal, P. C., “Factors Affecting Fluidity of Cast Irons”, Trans AFS, 60, 725-739 (1952)
Porter, D. A. and Easterling, K. E., Phase Transformations in Metals and Alloys, Nelson Thornes Ltd., UK (2001)
Portevin, A. and Bastien, P., Compts Rendue, Acad. Sci. France, 194, 559 (1932)
Portevin, A. and Bastien, P., Compts Rendue, Acad. Sci. France, 194, 850 (1932)
Ragone, D. V., Adams, C. M. and Taylor, H. F., Institute for Fluidity Mechanics and Heat Transfer (1955)
Ragone, D. V., Adams, C. M. and Taylor, H. F., “Some Factors Affecting Fluidity of Metals”, Trans AFS, 64, 640-652 (1956)
Ragone, D. V., Adams, C. M. and Taylor, H. F., “A New Method for Determining the Effect of Solidification Range on Fluidity”, Trans AFS, 64, 653-657 (1956)
Reed-Hill, R. E. and Abbaschian, R., Physical Metallurgy Principles, 3rd ed., International Thomson Publishing (1992)
Rosenberg, H. W., ‘Titanium Alloying in Theory and Practice”, The Science, Technology and Application of Titanium, Proc. First International Conference on Titanium, London, edited by Jaffee and Promisel, Pergaman Press (1956)
Ruch, M. and Arias, D., “β/α Transformation in Dilute Titanium and Zirconium Base Alloys”, Scripta Metallurgica et Materialia, 24, 1577-1582 (1990)
Ruff, W., Iron and Steel Institute Carnegie Scholarship Memoirs, 25, 1-39 (1936)
Saha, R. J., Handy, T. K., Misra, R. D. K. and Jacob, K. T., “On the Evaluation of Stability of Rare Earth Oxides as Face Coats for Investment Casting of Titanium”, Metallurgical Transactions B, 21B, 559-566 (1990)
Saha, R. L. and Misra, R. D. K., “Formation of Low-Melting Eutectic at the Metal-Mould Interface During Titanium Casting in Zircon Sand Moulds”, Journal of Materials Science Letters, 10, 1318-1319 (1991)
Saito and Hayaschi, Proc. College of Eng., Kyoto Imp. Univ., II, 83(1919); IV, 165 (1924)
Samuels, L. E., Metals Engineering: A Technical Guide, p. 323, ASM International, Ohio (1988)
Schutz, R. W. and Watkins, H. B., "Recent Developments in Titanium Alloy Application in the Energy Industry", Materials Science and Engineering, A243, 305?315 (1998)
Seagle, S. R., “The State of the USA Titanium Industry in 1995”, Materials Science and Engineering, A213, 1-7 (1996)
Shackelford, J. F., Introduction to Materials Science for Engineers, 2nd ed., Macmillan Publishing Co. (1988)
Sumner, D. R. and Galante, J. O., “Determinants of Stress Shielding: Design Versus Materials Versus Interface”, Clinical Orthopaedics and Related Research, 274, 202 (1992)
Suzuki, K., Nishikawa, K. and Watakabe, S., “Stability of Yttria for titanium Alloy Precision Casting Mold”, Materials Transactions, JIM, 38(1), 54-62 (1997)
Suzuki, K., Nishikawa, K. and Watakabe, S., “Molding Filling and solidification during Centrifugal Precision Castin of Ti-6Al-4V Alloy”, Materials Transactions, JIM, 37(12), 1793-1801 (1996)
Suzuki, K., Nishikawa, K. and Watakabe, S., “Stability of Yttria for titanium Alloy Precision Casting Mold”, Materials Transactions, JIM, 38(1), 54-62 (1997)
Stefansson, N., Weiss, I., Hutt, A. J. and Allen, P. J., Titanium ’95, vol. 2 edit by Blenkinsop, P. A., Evans, W. J. and Flower, H. M., 980-987, The Institute of Materials, London (1996)
Syverud, M. and Hero, H., “Mold Filling of Ti Castings Using Investments with Different Gas Permeability”, Dental Materials, 11, 14-18 (1995)
Taira, M., Moser, J. B. and Greener, E. H., “Studies of Ti Alloys for Dental Castings”, Dental Materials, 45-50 (1989)
Takahashi, J., Kimura, H., Lautenschlager, E. P., Chern Lin, J. H., Moser, J. B. and Greener, E. H., “Casting Pure Titanium into Commercial Phosphate-bonded SiO2 Investment Molds”, Journal of Dental Research, Vol. 69, No. 12, p 1800-1805 (1990)
Takahashi, W. T., Nagata, Okada, M. Y., Kuwayama, Sida and T., “Development of High-Performance Titanium Alloys for Automobile Use”, The Sumimoto Search, 52, 59-66 (1993)
Takahashi, J., Zhang, J. Z. and Okazaki, M., “Effect of Casting Methods on Castability of Pure Titanium”, Dental Materials Journal, 12, 2, 245-252 (1993)
Tamaki, Y., Miyazaki, T., Lautenschlager, E. P. and Greener, E. H., “Titanium Casting with Newly Developed Phosphate Bonded Investments”, Journal of Dental Research, 70, 485, Abst.1755 (1991)
Thomson, D. H., “A Study of the Effect of an Increased Mold Temperature on the Casting Ability of Some Nonprecious Alloys for Porcelain Veneers”, The Journal of Prosthetic Dentistry, 48, 1 (1982)
Turkdogan, E. T., Physical Chemitry of High Temperature Technology, p.93, Academic Press, New York (1980)
Utigard, T., “Surface and Interfacial Energies of Metals”, Z. Metallkd., 84, 11, 792-795 (1993)
Wakasa, K., Yoshida, Y., Ikeda, A. and Yamaki, M., “A Castability Test of Experimental Apatite-Based Glass Ceramics for Small Castings”, Journal of Materials Science Letters, 13, 883-884 (1994)
Walter, J. L., Jackson, M. R. and Sims, C. T., “Alloying”, ASM International, Metals Park, Ohio (1989)
Wang, K., “The Use of Titanium for Medical Applications in the U.S.A.”, Materials Science and Engineering, A213, 134-137 (1996)
Wang, K. K., Gustavson,L. J. and Dumbleton, J. H., The Characterization of Ti-12Mo-6Zr-2Fe─ A New Alloy Developed for Surgical Implants”, Beta Titanium Alloys in the 1990’s, TMS of AIME, 49-60 (1993)
Wang, R. R., Welsh, G. E. and Castro-Cedeno, M., “Interfacial Reactions of Cast Titanium with Mold Materials”, The International Journal of prosthodontics, 11, 1, 33-43 (1998)
Watanabe, Watkins, J. H., Nakajima, H., Atsuta, M. and Okabe, T., “Effect of Pressure Difference on the Quality of Titanium Casting”, Journal of Dental Research, 76, 3, 773-779 (1997)
Waterstrat, R. M. and Gieseppetti, A. A., “Casting Apparatus and Investment Mold Material for Metal which Melt at Very High Temperature”, Journal Dental Research, 63, 3, 317, Abst. 1278 (1985)
Weiss, I. and Semiatin, S. L., “Thermomechanical Processing of Alpha Titanium Alloys- An Overview”, Materials Science and Engineering, A263, 243-256 (1999)
West, T. D., Metallurgy of Cast Iron, Cleveland Printing Co., Cleveland, Ohio (1902).
Wictorin, L., EI-Mahallawy, N., Taha, M. A. and Fredriksson, H., “Metallographic Studies of Metal/Mould Reaction”, Cast Metals, 4, 4, 182-187 (1992)
Willams, J. C., “alternate Materials Choices- Some Challenges to the Increased Use of Ti alloys”, Materials Science and Engineering, A263, 107-111 (1999)
Yamada, M., “An Overview on the Development of Titanium Alloys for Non-aerospace Application in Japan”, Materials Science and Engineering, A213, 8-15 (1996)
Yoshiaki, T., “Recent Development in the Application of Titanium in Japan”, 3rd International Symposium on Titanium in Dentistry (1995)
浜中人士, 土居壽, 米山隆之, 三浦維四, “高真空鑄造機とリン酸鹽系埋沒材によゐチタンの鑄造”, 齒科技工, 15卷, 8號, 1007-1014昭和62年 (1987)
浜中人士, 土居壽, 米山隆之, 三浦維四, “高真空鑄造機の開發によゐチタン應用のルーティン化~リン酸鹽系埋沒材によゐチタンの鑄造~”, 齒科技工, 15卷, 8號, 1007-1014, 昭和62年(1987)
柯賢文,腐蝕及其防制,第二章、第五章,全華科技圖書股份有限公司,台北,台灣 (1994)
彭健雄、許哲榮,物理冶金原理,二版,雲陽出版社,台北,台灣 (1989)
賴耿陽,金屬鈦(理論與應用),二版,復漢出版社,台南,台灣(1995)
賴耿陽,精密鑄造技術,復漢出版社,台南,台灣 (1985)
蔡幸甫, “鈦及鈦合金工業之應用及現況”, 工業材料, 145, 68-70, 88年1月
鮮其振,金屬腐蝕膜特性探討,徐氏基金會,台北,台灣 (1998)
何文福,鑄造鈦鉬合金之結構及性質研究,國立成功大學博士論文 (1999)