簡易檢索 / 詳目顯示

研究生: 吳玟翰
Wu, Wen-Han
論文名稱: 無模板成長奈米銀線之合成與機制
Synthesis and Mechanism of Template-free Growth of Silver Nanowires
指導教授: 許聯崇
Hsu, Lien-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 78
中文關鍵詞: 硝酸銀奈米銀線聚乙烯吡咯烷酮多元醇合成法注射模式
外文關鍵詞: Silver nitrate, Silver nanowires, Poly(vinyl pyrrolidone), polyol process, syringing, model
相關次數: 點閱:110下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,使用一步驟的方式,以硝酸銀為前趨物,聚乙烯吡咯烷酮(poly(vinyl pyrrolidone), PVP)為保護劑,乙二醇為還原劑,在不含氯離子的狀態下,將奈米銀線合成出來。硝酸銀與PVP的添加將以注射的方式控制。藉由調控進料速度與硝酸銀濃度及PVP濃度,我們可以獲得不同寬度與長度的奈米銀線。我們還觀察到在銀線的成長過程中,有粗化及銀棒兼併的現象。由這些現象,我們試著去發展奈米銀線的成長模式。接著,我們藉由這個模式的概念,成功地製備出高深寬比的奈米銀線。最後,我們利用奈米銀線去製作透明導電薄膜,並測試其片電阻值及透光度(300 nm ~ 800 nm)。

    In this study, silver nanowires were synthesized in a one–pot method from silver nitrate and poly(vinyl pyrrolidone), PVP, reduced by ethylene glycol without the presence of chloride ion. The addition of silver nitrate and PVP was controlled by the syringe. The syringe rate and the concentrations of silver nitrate and PVP were manipulated to obtain silver nanowires with different widths and lengths. We have observed the phenomenon of coarsening and combination of silver nanorods during the growth of the silver nanowires. With these phenomena, we tried to develop a growth model of silver nanowires. Then, we successfully synthesized silver nanowires with high aspect ratios via the developed model. Finally, we used silver nanowires to fabricate transparent conductive thin films and measured their sheet resistance and transmitance (300 nm ~ 800 nm).

    總目錄 中文摘要...................................................................................................I 英文摘要.................................................................................................II 致謝.........................................................................................................III 總目錄....................................................................................................IV 圖目錄..................................................................................................VIII 第一章 緒論.............................................................................................1 1-1 前言...........................................................................................1 1-2 研究動機與目的..........................................................................2 第二章 文獻回顧與原理......................................................................3 2-1 透明導電膜的發展及種類..........................................................3 2-1-1 氧化銦錫(ITO) ...................................................................4 2-1-2 氧化物替代品.....................................................................6 2-1-3 導電高分子.........................................................................8 2-1-4 金屬薄膜.............................................................................9 2-1-5 金屬線網...........................................................................10 2-2 奈米銀線合成的方式................................................................11 2-2-1 模板合成法.......................................................................11 2-2-2 光觸媒還原法...................................................................12 2-2-3 多元醇溶液合成法...........................................................13 2-3 奈米銀線製作透明導電膜的塗佈方法....................................22 2-3-1 澆鑄法(drop-casting) ........................................................22 2-3-2 刷塗法(brush-painting) ....................................................23 2-3-3 線棒塗佈法(wire bar coating) ..........................................24 2-3-4 噴塗法(spraying) ..............................................................25 2-3-5 轉印法(transferring) .........................................................27 2-4 奈米銀線的其他應用................................................................29 2-4-1 食品檢測-表面增強拉曼散射(surface-enhanced Raman scattering) ....................................................................................29 2-4-2 鹵素離子偵測...................................................................31 2-4-3 奈米光線路.......................................................................32 第三章 實驗方法與步驟....................................................................33 3-1 藥品與儀器................................................................................33 3-1-1 藥品...................................................................................33 3-1-2 儀器...................................................................................33 3-2 實驗流程....................................................................................35 3-2-1 奈米銀線的合成...............................................................35 3-2-1-1 硝酸銀溶液與PVP溶液的調配..............................35 3-2-1-2 注射硝酸銀溶液與PVP溶液..................................35 3-2-1-3 清洗奈米銀線..........................................................35 3-2-2 奈米銀線製備透明導電薄膜...........................................37 3-2-2-1 去除奈米顆粒..........................................................37 3-2-2-2 玻璃基板的表面處理..............................................37 3-2-2-3 澆鑄法製備透明導電薄膜......................................37 3-2-2-4 噴塗法法製備透明導電薄膜..................................38 3-3 銀線組成分析與形貌鑑定........................................................39 3-3-1 X光繞射分析 ( XRD ) .....................................................39 3-3-2 熱重分析儀 ( TGA ) ........................................................39 3-3-3 紫外-可見光吸收光譜分析( UV/VIS spectro – photometer ) ................................................................................39 3-3-4 場放射型掃描式電子顯微鏡 ( FE-SEM ) .....................40 3-3-5 能量分散光譜儀 ( Energy Dispersive spectrometer ) 分析..................................................................................................40 3-3-6 穿透式電子顯微鏡觀察 ( TEM ) ...................................40 3-4 透明導電薄膜性質與分析........................................................41 3-4-1 光學顯微鏡 ( OM ) .........................................................41 3-4-2 紫外-可見光穿透光譜分析( UV/VIS spectro – photometer ) ................................................................................41 3-4-3 四點探針 ( Four - point probe method ) .........................41 第四章 結果與討論.............................................................................42 4-1 以注射法製備無氯之銀線之研究............................................42 4-1-1 硝酸銀進料速度操縱之實驗...........................................42 4-1-2 硝酸銀溶液與PVP溶液之濃度等比例放大之實驗.......49 4-2 探討銀線的成長機制................................................................51 4-2-1 銀線初期之成長...............................................................51 4-2-2 銀線成長機制之模式.......................................................55 4-2-2-1 不含Cl-之銀線成長機制.........................................56 4-2-2-2 含Cl-之銀線成長機制.............................................60 4-2-3 根據成長機制製備高深寬比之銀線...............................62 4-3 透明導電薄膜製備及性質........................................................67 4-3-1 澆鑄法製備透明導電薄膜...............................................69 4-3-2 噴塗法製備透明導電薄膜...............................................72 第五章 結論...........................................................................................75 參考文獻................................................................................................76

    1. 陳肇英、吳金寶、呂明生, AZO 透明導電薄膜在觸控面板之應用契機. 工業材料雜誌308期, 2012: p. 77-84.
    2. 洪文進、許登貴、萬明安、郭書瑋、蘇昭瑾, ITO 透明導電薄膜:從發展與應用到製備與分析. Chemistry(The Chinese Chem. SOC., Taipei), 2005. 63: p. 409-418.
    3. 黃敬佩, ITO導電玻璃及相關透明導電膜之原理及應用. 2006.
    4. 材網編輯室/工研院材化所, 氧化鋅透明導電膜的研發近況. 材料最前線, 2010.
    5. 富士通與富士通研究所, 有機導電聚合物觸摸屏. FinD, 2009. 26: p. 22-25.
    6. 廖鎔榆, 軟性電子中替代ITO之透明導電材料. 工業材料雜誌256期, 2008: p. 118-123.
    7. 曾釋鋒, 雷射直寫透明導電薄膜技術. 儀科中心簡訊, 2012. 110.
    8. Lee, J., et al., Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale, 2012. 4(20): p. 6408-6414.
    9. Saedi, A. and M. Ghorbani, Electrodeposition of Ni–Fe–Co alloy nanowire in modified AAO template. Materials Chemistry and Physics, 2005. 91(2-3): p. 417-423.
    10. Yang, R., et al., Silver nanowires prepared by modified AAO template method. Materials Letters, 2007. 61(3): p. 900-903.
    11. Tung, H.-T., et al., Thermally assisted photoreduction of vertical silver nanowires. Journal of Materials Chemistry, 2009. 19(16): p. 2386-2391.
    12. Tung, H.T., et al., A novel method for preparing vertically grown single-crystalline gold nanowires. Nanotechnology, 2008. 19(45): p. 455603.
    13. Saidi, W.A., H. Feng, and K.A. Fichthorn, Binding of Polyvinylpyrrolidone to Ag Surfaces: Insight into a Structure-Directing Agent from Dispersion-Corrected Density Functional Theory. The Journal of Physical Chemistry C, 2013. 117(2): p. 1163-1171.
    14. Sun, Y., et al., Uniform Silver Nanowires Synthesis by Reducing AgNO3with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone). Chemistry of Materials, 2002. 14(11): p. 4736-4745.
    15. Sun, Y., et al., Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence. Nano Letters, 2003. 3(7): p. 955-960.
    16. Tsuji, M., et al., Roles of Pt seeds and chloride anions in the preparation of silver nanorods and nanowires by microwave-polyol method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008. 316(1-3): p. 266-277.
    17. Chen, Y., et al., Understanding the Influence of Crystallographic Structure on Controlling the Shape of Noble Metal Nanostructures. Crystal Growth & Design, 2011. 11(12): p. 5457-5460.
    18. Coskun, S., B. Aksoy, and H.E. Unalan, Polyol Synthesis of Silver Nanowires: An Extensive Parametric Study. Crystal Growth & Design, 2011. 11(11): p. 4963-4969.
    19. Wiley, B., et al., Shape-controlled synthesis of metal nanostructures: the case of silver. Chemistry, 2005. 11(2): p. 454-463.
    20. Kuo, C.L. and K.C. Hwang, Nitrate ion promoted formation of Ag nanowires in polyol processes: a new nanowire growth mechanism. Langmuir, 2012. 28(8): p. 3722-3729.
    21. Gou, L., M. Chipara, and J.M. Zaleski, Convenient, Rapid Synthesis of Ag Nanowires. Chemistry of Materials, 2007. 19(7): p. 1755-1760.
    22. Chen, D., et al., Controlled synthesis of monodisperse silver nanocubes via a solvothermal method. Journal of Materials Science: Materials in Electronics, 2011. 22(12): p. 1788-1795.
    23. Lu, Y.-C., K.-S. Chou, and M. Nogami, Process window for the synthesis of Ag wires through polyol process. Materials Chemistry and Physics, 2009. 116(1): p. 1-5.
    24. Tokuno, T., et al., Fabrication of silver nanowire transparent electrodes at room temperature. Nano Research, 2011. 4(12): p. 1215-1222.
    25. Lim, J.-W., et al., Simple brush-painting of flexible and transparent Ag nanowire network electrodes as an alternative ITO anode for cost-efficient flexible organic solar cells. Solar Energy Materials and Solar Cells, 2012. 107: p. 348-354.
    26. Hu, L., et al., Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano, 2010. 4(5): p. 2955-2963.
    27. Lu, Y.C. and K.S. Chou, Tailoring of silver wires and their performance as transparent conductive coatings. Nanotechnology, 2010. 21(21): p. 215707.
    28. Kim, T., et al., Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate. ACS Appl Mater Interfaces, 2013. 5(3): p. 788-794.
    29. Qiu, C., A. Maingi, and C. Jiang, Trace Detection of Melamine by Surface-Enhanced Raman Scattering on Silver Nanostructured Thin Films. Journal of Nanoengineering and Nanomanufacturing, 2011. 1(1): p. 93-100.
    30. Chen, L.-M. and Y.-N. Liu, Ag-nanoparticle-modified single Ag nanowire for detection of melamine by surface-enhanced Raman spectroscopy. Journal of Raman Spectroscopy, 2012. 43(8): p. 986-991.
    31. Qin, X., et al., Synthesis of silver nanowires and their applications in the electrochemical detection of halide. Talanta, 2011. 84(3): p. 673-678.
    32. Singh, D., M. Raghuwanshi, and G.V. Pavan Kumar, Propagation of light in serially coupled plasmonic nanowire dimer: Geometry dependence and polarization control. Applied Physics Letters, 2012. 101(11): p. 111111.
    33. Wei, H., et al., Cascaded logic gates in nanophotonic plasmon networks. Nat Commun, 2011. 2: p. 387.

    無法下載圖示 校內:2018-08-14公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE