研究生: |
謝文升 Hsieh, Wen-Sheng |
---|---|
論文名稱: |
探討以密碼子去優化及高保真性置換的合成腸病毒A71型作為疫苗候選株之評估 Investigate synthetic enterovirus A71 containing codon deoptimized-VP1 and high fidelity substitutions as vaccine candidate in vivo |
指導教授: |
王貞仁
Wang, Jen-Ren |
學位類別: |
碩士 Master |
系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 52 |
中文關鍵詞: | 腸病毒A71型 、密碼子去優化 、免疫 、免疫反應 、疫苗 |
外文關鍵詞: | Enterovirus A71, codon-deoptimization, immunization, immune responses, vaccine |
相關次數: | 點閱:105 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腸病毒A71型是世界上造成手足口症的主要病原體之一,自1998年以來在台灣引起了好幾次大爆發。為了預防腸病毒A71型的感染,疫苗研發的重要性日漸上升。密碼子去最優化在先前研究已證明會影響病毒複製,但不會影響病毒蛋白序列,故病毒能保有相同的抗原特性。我們之前的研究中,建構了包含高保真性聚合酶點突變之密碼子去優化的腸病毒A71型,並證明了這些病毒展現了較低的生長速率,但抗原特性沒有變化。在本篇研究中,我們通過研究這幾株高保真性聚合酶點突變之密碼子去優化的腸病毒A71型引起的毒力、體液和細胞免疫反應,進一步評估其作為疫苗候選株的潛力。被高保真性密碼子去優化的病毒感染的ICR小鼠的體重變化與模擬感染的組別相似,且與感染後21天的毒力株相比,它們顯示出較輕微的臨床評分,亦沒有死亡,表明這些病毒的毒力降低。我們還檢查了各個器官中病毒感染後的進程,發現密碼子去優化和高保真性聚合酶點突變的組合能夠限制病毒在體內的複製。在組織學分析中,透過蘇木精-伊紅染色及免疫組織染色證實,在這些高保真性密碼子去優化的腸病毒A71型感染之小鼠中檢測到的組織病理學變化和病毒抗原比MP4病毒感染的小鼠還要少。這幾株高保真性密碼子去優化的腸病毒A71型產生的抗血清亦顯示出具有中和能力之強大的特異性IgG抗體。收集免疫後脾細胞,並用各種高保真性密碼子去優化的病毒蛋白刺激,我們量化在培養基中IL-1β、IL-2、IL-4、IL-6、TNF-α和IFN-γ的表現量,發現經高保真性密碼子去優化的腸病毒A71型免疫過的小鼠明顯高於陰性對照組,表明高保真性密碼子去優化病毒引起了Th1和Th2介導的免疫反應。更重要的是,這些病毒誘導的抗血清為新生小鼠提供了針對致命性攻擊的保護。總之,我們證明了透過免疫高保真性密碼子去優化的腸病毒A71型後,誘導了強大的體液和細胞免疫反應,並賦予了新生小鼠對抗致命性腸病毒攻擊的保護力,這表明了高保真性密碼子去優化之腸病毒A71型對於未來腸病毒A71型之疫苗開發的可行性。
Enterovirus A71 (EV-A71) is one of the major causative agents of hand, foot and mouth disease (HFMD) in the world, it caused several large outbreaks in Taiwan since 1998. To prevent EV-A71 infection, development of virus vaccine is urgent and important. Codon-deoptimization (CD) has been shown to impact virus replication, but it doesn’t affect the viral protein sequence and the virus retains the same antigenicity. Our previous study had constructed VP1 codon-deoptimized (VP1-CD) reverse genetics EV-A71 (rgEV-A71) containing high-fidelity (HF) 3D polymerase and demonstrated these CD-HF viruses showed slightly lower growth kinetics than wild type in vitro, but with no change in antigenicity. In this study, we further evaluated the potential of these rgEV-A71-CD-HF (CD-HF) viruses as a vaccine candidate by investigating the virulence, humoral and cellular immune responses elicited by the CD-HF viruses. ICR mice infected with CD-HF viruses showed similar body weight changes to the mock-infected group. They showed mild clinical score and no deaths when compared with virulence strain 21 days post-infection, indicating reduced virulence of these CD-HF viruses. We also examined the progression of virus infection in various organs, and found that a combination of codon-deoptimization and high-fidelity substitutions in 3D polymerase was able to limit the viral replication in vivo. In histology analysis, H&E and IHC staining confirmed that the histopathological changes and viral antigens were detected less in these CD-HF-infected mice than in mice infected with MP4 virulent strain virus. The antisera raised by rgEV-A71-CD-HF viruses showed strong specific IgG antibody with neutralize ability. We harvested the splenocytes post-immunization and stimulated with various CD-HF proteins. We quantified IL-1β, IL-2, IL-4, IL-6, TNF-α, and IFN-γ levels in culture supernatant. The levels in rgEV-A71-CD-HF-immunized mice were significantly higher than negative control, indicating elicitation of both Th1- and Th2-directed immune response by CD-HF viruses. More importantly, the antisera elicited by rgEV-A71-CD-HF conferred protection to neonatal mice against the lethal challenge. In conclusion, we demonstrated that immunization with CD-HF viruses induced potent humoral and cellular immune response and conferred protection to neonatal mice against lethal EV-A71 challenge, which suggest that the CD-HF viruses may be feasible for next generation EV-A71 vaccine development.
1. Adams, M.J., et al., Tracking the changes in virus taxonomy. Arch Virol, 2015. 160(5): p. 1375-83.
2. Whitton, J.L., C.T. Cornell, and R. Feuer, Host and virus determinants of picornavirus pathogenesis and tropism. Nat Rev Microbiol, 2005. 3(10): p. 765-76.
3. Jacobson, M.F. and D. Baltimore, Morphogenesis of poliovirus. i. association of the viral RNA with coat protein. J Mol Biol, 1968. 33(2): p. 369-78.
4. Phillips, B.A. and R. Fennell, Polypeptide composition of poliovirions, naturally occurring empty capsids, and 14S precursor particles. Journal of virology, 1973. 12(2): p. 291-299.
5. Rossmann, M.G., et al., Structure of a human common cold virus and functional relationship to other picornaviruses. Nature, 1985. 317(6033): p. 145-153.
6. Yi, E.J., et al., Enterovirus 71 infection and vaccines. Clin Exp Vaccine Res, 2017. 6(1): p. 4-14.
7. Lin, J.Y., et al., Viral and host proteins involved in picornavirus life cycle. J Biomed Sci, 2009. 16: p. 103.
8. Lin, J.Y., M.L. Li, and S.R. Shih, Far upstream element binding protein 2 interacts with enterovirus 71 internal ribosomal entry site and negatively regulates viral translation. Nucleic Acids Res, 2009. 37(1): p. 47-59.
9. Lin, J.Y., et al., Heterogeneous nuclear ribonuclear protein K interacts with the enterovirus 71 5' untranslated region and participates in virus replication. J Gen Virol, 2008. 89(Pt 10): p. 2540-9.
10. Van Tu, P., et al., Epidemiologic and virologic investigation of hand, foot, and mouth disease, southern Vietnam, 2005. Emerg Infect Dis, 2007. 13(11): p. 1733-41.
11. Sim, A.C., et al., RNA interference against enterovirus 71 infection. Virology, 2005. 341(1): p. 72-9.
12. McMinn, P.C., An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiol Rev, 2002. 26(1): p. 91-107.
13. Chen, P., et al., Molecular determinants of enterovirus 71 viral entry: cleft around GLN-172 on VP1 protein interacts with variable region on scavenge receptor B 2. J Biol Chem, 2012. 287(9): p. 6406-20.
14. Nishimura, Y., et al., Enterovirus 71 binding to PSGL-1 on leukocytes: VP1-145 acts as a molecular switch to control receptor interaction. PLOS Pathogens, 2013. 9(7): p. e1003511.
15. Yang, S.L., et al., Annexin II binds to capsid protein VP1 of enterovirus 71 and enhances viral infectivity. J Virol, 2011. 85(22): p. 11809-20.
16. Rossmann, M.G., Y. He, and R.J. Kuhn, Picornavirus-receptor interactions. Trends Microbiol, 2002. 10(7): p. 324-31.
17. Huang, S.C., et al., Appearance of intratypic recombination of enterovirus 71 in Taiwan from 2002 to 2005. Virus Res, 2008. 131(2): p. 250-9.
18. Liu, C.C., et al., Identification and characterization of a cross-neutralization epitope of Enterovirus 71. Vaccine, 2011. 29(26): p. 4362-72.
19. Kiener, T.K., et al., A novel universal neutralizing monoclonal antibody against enterovirus 71 that targets the highly conserved "knob" region of VP3 protein. PLoS Negl Trop Dis, 2014. 8(5): p. e2895.
20. Wang, X., et al., A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nature Structural &Amp; Molecular Biology, 2012. 19: p. 424.
21. Shingler, K.L., et al., The enterovirus 71 A-particle forms a gateway to allow genome release: a cryoEM study of picornavirus uncoating. PLoS Pathog, 2013. 9(3): p. e1003240.
22. Fricks, C.E. and J.M. Hogle, Cell-induced conformational change in poliovirus: externalization of the amino terminus of VP1 is responsible for liposome binding. J Virol, 1990. 64(5): p. 1934-45.
23. Hellen, C.U., C.K. Lee, and E. Wimmer, Determinants of substrate recognition by poliovirus 2A proteinase. J Virol, 1992. 66(6): p. 3330-8.
24. Hsu, Y.Y., et al., In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair. Biochem Biophys Res Commun, 2007. 353(4): p. 939-45.
25. Morley, S.J., P.S. Curtis, and V.M. Pain, eIF4G: translation's mystery factor begins to yield its secrets. Rna, 1997. 3(10): p. 1085-104.
26. Kuo, R.L., et al., Infection with enterovirus 71 or expression of its 2A protease induces apoptotic cell death. J Gen Virol, 2002. 83(Pt 6): p. 1367-76.
27. Aldabe, R., A. Barco, and L. Carrasco, Membrane permeabilization by poliovirus proteins 2B and 2BC. J Biol Chem, 1996. 271(38): p. 23134-7.
28. van Kuppeveld, F.J., et al., Coxsackie B3 virus protein 2B contains cationic amphipathic helix that is required for viral RNA replication. J Virol, 1996. 70(6): p. 3876-86.
29. Guan, H., et al., Crystal structure of 2C helicase from enterovirus 71. Science advances, 2017. 3(4): p. e1602573-e1602573.
30. Tang, W.F., et al., Reticulon 3 binds the 2C protein of enterovirus 71 and is required for viral replication. J Biol Chem, 2007. 282(8): p. 5888-98.
31. Pallai, P.V., et al., Cleavage of synthetic peptides by purified poliovirus 3C proteinase. J Biol Chem, 1989. 264(17): p. 9738-41.
32. Téoulé, F., et al., The golgi protein ACBD3, an interactor for poliovirus protein 3A, modulates poliovirus replication. Journal of Virology, 2013. 87(20): p. 11031.
33. Dodd, D.A., T.H. Giddings, Jr., and K. Kirkegaard, Poliovirus 3A protein limits interleukin-6 (IL-6), IL-8, and beta interferon secretion during viral infection. J Virol, 2001. 75(17): p. 8158-65.
34. Pathak, H.B., et al., Picornavirus genome replication: assembly and organization of the VPg uridylylation ribonucleoprotein (initiation) complex. J Biol Chem, 2007. 282(22): p. 16202-13.
35. Cui, S., et al., Crystal structure of human enterovirus 71 3C protease. J Mol Biol, 2011. 408(3): p. 449-61.
36. Shih, S.R., et al., Mutations at KFRDI and VGK domains of enterovirus 71 3C protease affect its RNA binding and proteolytic activities. J Biomed Sci, 2004. 11(2): p. 239-48.
37. Takegami, T., et al., Membrane-dependent uridylylation of the genome-linked protein VPg of poliovirus. Proc Natl Acad Sci U S A, 1983. 80(24): p. 7447-51.
38. Plotch, S.J. and O. Palant, Poliovirus protein 3AB forms a complex with and stimulates the activity of the viral RNA polymerase, 3Dpol. J Virol, 1995. 69(11): p. 7169-79.
39. Sun, Y., et al., Enterovirus 71 VPg uridylation uses a two-molecular mechanism of 3D polymerase. J Virol, 2012. 86(24): p. 13662-71.
40. Li, L., et al., Genetic characteristics of human enterovirus 71 and coxsackievirus A16 circulating from 1999 to 2004 in Shenzhen, People's Republic of China. J Clin Microbiol, 2005. 43(8): p. 3835-9.
41. Schmidt, N.J., E.H. Lennette, and H.H. Ho, An apparently new enterovirus isolated from patients with disease of the central nervous system. J Infect Dis, 1974. 129(3): p. 304-9.
42. Melnick, J.L., Enterovirus type 71 infections: a varied clinical pattern sometimes mimicking paralytic poliomyelitis. Rev Infect Dis, 1984. 6 Suppl 2: p. S387-90.
43. Deibel, R., L.L. Gross, and D.N. Collins, Isolation of a new enterovirus (38506). Proc Soc Exp Biol Med, 1975. 148(1): p. 203-7.
44. Kennett, M.L., et al., Enterovirus type 71 infection in Melbourne. Bull World Health Organ, 1974. 51(6): p. 609-15.
45. Hagiwara, A., I. Tagaya, and T. Yoneyama, Epidemic of hand, foot and mouth disease associated with enterovirus 71 infection. Intervirology, 1978. 9(1): p. 60-3.
46. Blomberg, J., et al., Letter: New enterovirus type associated with epidemic of aseptic meningitis and-or hand, foot, and mouth disease. Lancet, 1974. 2(7872): p. 112.
47. Chumakov, M., et al., Enterovirus 71 isolated from cases of epidemic poliomyelitis-like disease in Bulgaria. Arch Virol, 1979. 60(3-4): p. 329-40.
48. Nagy, G., et al., Virological diagnosis of enterovirus type 71 infections: experiences gained during an epidemic of acute CNS diseases in Hungary in 1978. Arch Virol, 1982. 71(3): p. 217-27.
49. van der Sanden, S., et al., Epidemiology of enterovirus 71 in the Netherlands, 1963 to 2008. J Clin Microbiol, 2009. 47(9): p. 2826-33.
50. Takimoto, S., et al., Enterovirus 71 infection and acute neurological disease among children in Brazil (1988-1990). Trans R Soc Trop Med Hyg, 1998. 92(1): p. 25-8.
51. Puenpa, J., et al., The history of enterovirus A71 outbreaks and molecular epidemiology in the Asia-Pacific region. Journal of Biomedical Science, 2019. 26(1): p. 75.
52. Chan, L.G., et al., Deaths of children during an outbreak of hand, foot, and mouth disease in sarawak, malaysia: clinical and pathological characteristics of the disease. For the outbreak study group. Clin Infect Dis, 2000. 31(3): p. 678-83.
53. Ho, M., et al., An epidemic of enterovirus 71 infection in Taiwan. Taiwan enterovirus epidemic working group. N Engl J Med, 1999. 341(13): p. 929-35.
54. Liu, C.C., et al., An outbreak of enterovirus 71 infection in Taiwan, 1998: epidemiologic and clinical manifestations. J Clin Virol, 2000. 17(1): p. 23-30.
55. McMinn, P., et al., Neurological manifestations of enterovirus 71 infection in children during an outbreak of hand, foot, and mouth disease in western Australia. Clin Infect Dis, 2001. 32(2): p. 236-42.
56. Chan, K.P., et al., Epidemic hand, foot and mouth disease caused by human enterovirus 71, singapore. Emerg Infect Dis, 2003. 9(1): p. 78-85.
57. Wang, J.R., et al., Change of major genotype of enterovirus 71 in outbreaks of hand-foot-and-mouth disease in Taiwan between 1998 and 2000. J Clin Microbiol, 2002. 40(1): p. 10-5.
58. McMinn, P., et al., Phylogenetic analysis of enterovirus 71 strains isolated during linked epidemics in Malaysia, Singapore, and Western Australia. Journal of virology, 2001. 75(16): p. 7732-7738.
59. Huang, S.W., et al., Reemergence of enterovirus 71 in 2008 in taiwan: dynamics of genetic and antigenic evolution from 1998 to 2008. J Clin Microbiol, 2009. 47(11): p. 3653-62.
60. Chia, M.-Y., et al., Epidemiology of enterovirus 71 infections in Taiwan. Pediatrics & Neonatology, 2014. 55(4): p. 243-249.
61. Ooi, M.H., et al., Clinical features, diagnosis, and management of enterovirus 71. Lancet Neurol, 2010. 9(11): p. 1097-105.
62. Huang, S.W., et al., Exogenous interleukin-6, interleukin-13, and interferon-γ provoke pulmonary abnormality with mild edema in enterovirus 71-infected mice. Respir Res, 2011. 12(1): p. 147.
63. Lin, T.Y., et al., Different proinflammatory reactions in fatal and non-fatal enterovirus 71 infections: implications for early recognition and therapy. Acta Paediatr, 2002. 91(6): p. 632-5.
64. Lin, T.Y., et al., Proinflammatory cytokine reactions in enterovirus 71 infections of the central nervous system. Clin Infect Dis, 2003. 36(3): p. 269-74.
65. Wang, S.M., et al., Pathogenesis of enterovirus 71 brainstem encephalitis in pediatric patients: roles of cytokines and cellular immune activation in patients with pulmonary edema. J Infect Dis, 2003. 188(4): p. 564-70.
66. Yeh, M.T., et al., A single nucleotide in stem loop II of 5'-untranslated region contributes to virulence of enterovirus 71 in mice. PLoS One, 2011. 6(11): p. e27082.
67. Huang, S.W., et al., Mutations in VP2 and VP1 capsid proteins increase infectivity and mouse lethality of enterovirus 71 by virus binding and RNA accumulation enhancement. Virology, 2012. 422(1): p. 132-43.
68. Chua, B.H., et al., The molecular basis of mouse adaptation by human enterovirus 71. J Gen Virol, 2008. 89(Pt 7): p. 1622-1632.
69. Caine, E.A., et al., A single mutation in the VP1 of enterovirus 71 is responsible for increased virulence and neurotropism in adult interferon-deficient mice. J Virol, 2016. 90(19): p. 8592-604.
70. Yuan, S., et al., Identification of positively charged residues in enterovirus 71 capsid protein VP1 essential for production of infectious particles. Journal of Virology, 2016. 90(2): p. 741-752.
71. Kung, Y.H., et al., Introduction of a strong temperature-sensitive phenotype into enterovirus 71 by altering an amino acid of virus 3D polymerase. Virology, 2010. 396(1): p. 1-9.
72. Liu, Y., et al., A novel finding for enterovirus virulence from the capsid protein VP1 of EV71 circulating in mainland China. Virus Genes, 2014. 48(2): p. 260-72.
73. Luo, S.T., et al., Enterovirus 71 maternal antibodies in infants, Taiwan. Emerging infectious diseases, 2009. 15(4): p. 581-584.
74. Zhu, F.-C., et al., Retrospective study of the incidence of HFMD and seroepidemiology of antibodies against EV71 and CoxA16 in prenatal women and their infants. PLOS ONE, 2012. 7(5): p. e37206.
75. Hayden, F.G., et al., Efficacy and safety of oral pleconaril for treatment of colds due to picornaviruses in adults: results of 2 double-blind, randomized, placebo-controlled trials. Clin Infect Dis, 2003. 36(12): p. 1523-32.
76. Tijsma, A., et al., The capsid binder vapendavir and the novel protease inhibitor SG85 inhibit enterovirus 71 replication. Antimicrobial agents and chemotherapy, 2014. 58(11): p. 6990-6992.
77. Wang, S.M., et al., Clinical spectrum of enterovirus 71 infection in children in southern Taiwan, with an emphasis on neurological complications. Clin Infect Dis, 1999. 29(1): p. 184-90.
78. Chi, C.Y., et al., Milrinone therapy for enterovirus 71-induced pulmonary edema and/or neurogenic shock in children: a randomized controlled trial. Crit Care Med, 2013. 41(7): p. 1754-60.
79. Mao, Q., et al., EV-A71 vaccine licensure: a first step for multivalent enterovirus vaccine to control HFMD and other severe diseases. Emerg Microbes Infect, 2016. 5(7): p. e75.
80. Mao, Q.-Y., et al., EV71 vaccine, a new tool to control outbreaks of hand, foot and mouth disease (HFMD). Expert review of vaccines, 2016. 15.
81. Arita, M., et al., An attenuated strain of enterovirus 71 belonging to genotype a showed a broad spectrum of antigenicity with attenuated neurovirulence in cynomolgus monkeys. J Virol, 2007. 81(17): p. 9386-95.
82. Chung, Y.C., et al., Immunization with virus-like particles of enterovirus 71 elicits potent immune responses and protects mice against lethal challenge. Vaccine, 2008. 26(15): p. 1855-62.
83. Lin, Y.L., et al., Enterovirus type 71 neutralizing antibodies in the serum of macaque monkeys immunized with EV71 virus-like particles. Vaccine, 2012. 30(7): p. 1305-12.
84. Zhang, C., et al., High-yield production of recombinant virus-like particles of enterovirus 71 in Pichia pastoris and their protective efficacy against oral viral challenge in mice. Vaccine, 2015. 33(20): p. 2335-41.
85. Li, H.Y., et al., Virus-like particles for enterovirus 71 produced from Saccharomyces cerevisiae potently elicits protective immune responses in mice. Vaccine, 2013. 31(32): p. 3281-7.
86. Tsou, Y.L., et al., Recombinant adeno-vaccine expressing enterovirus 71-like particles against hand, foot, and mouth disease. PLoS Negl Trop Dis, 2015. 9(4): p. e0003692.
87. Yan, Q., et al., Vesicular stomatitis virus-based vaccines expressing EV71 virus-like particles elicit strong immune responses and protect newborn mice from lethal challenges. Vaccine, 2016. 34(35): p. 4196-4204.
88. Wu, C.N., et al., Protection against lethal enterovirus 71 infection in newborn mice by passive immunization with subunit VP1 vaccines and inactivated virus. Vaccine, 2001. 20(5-6): p. 895-904.
89. Meng, T., et al., Display of VP1 on the surface of baculovirus and its immunogenicity against heterologous human enterovirus 71 strains in mice. PLoS One, 2011. 6(7): p. e21757.
90. Foo, D.G., et al., Identification of neutralizing linear epitopes from the VP1 capsid protein of Enterovirus 71 using synthetic peptides. Virus Res, 2007. 125(1): p. 61-8.
91. Aw-Yong, K.L., et al., Immunodominant IgM and IgG epitopes recognized by antibodies induced in enterovirus A71-associated hand, foot and mouth disease patients. PloS one, 2016. 11(11): p. e0165659-e0165659.
92. Gutman, G.A. and G.W. Hatfield, Nonrandom utilization of codon pairs in Escherichia coli. Proc Natl Acad Sci U S A, 1989. 86(10): p. 3699-703.
93. Moura, G., et al., Large scale comparative codon-pair context analysis unveils general rules that fine-tune evolution of mRNA primary structure. PLOS ONE, 2007. 2(9): p. e847.
94. Yu, C.H., et al., Codon usage influences the local rate of translation elongation to regulate co-translational protein folding. Mol Cell, 2015. 59(5): p. 744-54.
95. Groenke, N., et al., Mechanism of virus attenuation by codon pair deoptimization. Cell Reports, 2020. 31(4): p. 107586.
96. Mueller, S., et al., Reduction of the rate of poliovirus protein synthesis through large-scale codon deoptimization causes attenuation of viral virulence by lowering specific infectivity. J Virol, 2006. 80(19): p. 9687-96.
97. Zhang, J., et al., Analysis of codon usage and nucleotide composition bias in polioviruses. Virol J, 2011. 8: p. 146.
98. Coleman, J.R., et al., Virus attenuation by genome-scale changes in codon pair bias. Science, 2008. 320(5884): p. 1784-7.
99. Nogales, A., et al., Influenza A virus attenuation by codon deoptimization of the NS gene for vaccine development. J Virol, 2014. 88(18): p. 10525-40.
100. Cheng, B.Y.H., et al., Development of live-attenuated arenavirus vaccines based on codon deoptimization. Journal of Virology, 2015. 89(7): p. 3523.
101. Cheng, B.Y.H., et al., Development of live-attenuated arenavirus vaccines based on codon deoptimization of the viral glycoprotein. Virology, 2017. 501: p. 35-46.
102. Tsai, Y.H., et al., Enterovirus A71 containing codon-deoptimized VP1 and high-fidelity polymerase as next-generation vaccine candidate. J Virol, 2019. 93(13).
103. Abil, Z., X. Xiong, and H. Zhao, Synthetic biology for therapeutic applications. Molecular pharmaceutics, 2015. 12(2): p. 322-331.
104. Lauring, A.S. and R. Andino, Quasispecies theory and the behavior of RNA viruses. PLoS Pathog, 2010. 6(7): p. e1001005.
105. Campagnola, G., et al., Structure-function relationships underlying the replication fidelity of viral RNA-dependent RNA polymerases. J Virol, 2015. 89(1): p. 275-86.
106. Ray, A.S., et al., Intracellular metabolism of the nucleotide prodrug GS-9131, a potent anti-human immunodeficiency virus agent. Antimicrobial Agents and Chemotherapy, 2008. 52(2): p. 648.
107. Cihlar, T., et al., Novel nucleotide human immunodeficiency virus reverse transcriptase inhibitor GS-9148 with a low nephrotoxic potential: characterization of renal transport and accumulation. Antimicrob Agents Chemother, 2009. 53(1): p. 150-6.
108. Gnädig, N.F., et al., Coxsackievirus B3 mutator strains are attenuated in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2012. 109(34): p. E2294-E2303.
109. Yang, X., et al., Long-range interaction networks in the function and fidelity of poliovirus RNA-dependent RNA polymerase studied by nuclear magnetic resonance. Biochemistry, 2010. 49(43): p. 9361-9371.
110. Liu, X., et al., Vaccine-derived mutation in motif D of poliovirus RNA-dependent RNA polymerase lowers nucleotide incorporation fidelity. J Biol Chem, 2013. 288(45): p. 32753-65.
111. Boehr, D.D., X. Liu, and X. Yang, Targeting structural dynamics of the RNA-dependent RNA polymerase for anti-viral strategies. Current Opinion in Virology, 2014. 9: p. 194-200.
112. Castro, C., J.J. Arnold, and C.E. Cameron, Incorporation fidelity of the viral RNA-dependent RNA polymerase: a kinetic, thermodynamic and structural perspective. Virus Res, 2005. 107(2): p. 141-9.
113. Freistadt, M.S., J.A. Vaccaro, and K.E. Eberle, Biochemical characterization of the fidelity of poliovirus RNA-dependent RNA polymerase. Virology Journal, 2007. 4(1): p. 44.
114. Boehr, D.D., et al., Structure, dynamics, and fidelity of RNA-dependent RNA polymerases, in nucleic acid polymerases, K.S. Murakami and M.A. Trakselis, Editors. 2014, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 309-333.
115. McDonald, S., et al., Design of a genetically stable high fidelity coxsackievirus B3 polymerase that attenuates virus growth in Vivo. J Biol Chem, 2016. 291(27): p. 13999-4011.
116. Arias, A., et al., Determinants of RNA-dependent RNA polymerase (in)fidelity revealed by kinetic analysis of the polymerase encoded by a foot-and-mouth disease Virus mutant with reduced sensitivity to ribavirin. Journal of Virology, 2008. 82(24): p. 12346.
117. Sadeghipour, S., E.J. Bek, and P.C. McMinn, Ribavirin-resistant mutants of human enterovirus 71 express a high replication fidelity phenotype during growth in cell culture. J Virol, 2013. 87(3): p. 1759-69.
118. Meng, T. and J. Kwang, Attenuation of human enterovirus 71 high-replication-fidelity variants in AG129 mice. J Virol, 2014. 88(10): p. 5803-15.
119. Vignuzzi, M., E. Wendt, and R. Andino, Engineering attenuated virus vaccines by controlling replication fidelity. Nat Med, 2008. 14(2): p. 154-61.
120. Van Slyke, G.A., et al., Sequence-specific fidelity alterations associated with west nile virus attenuation in mosquitoes. PLOS Pathogens, 2015. 11(6): p. e1005009.
121. Naito, T., et al., Generation of a Genetically Stable High-Fidelity Influenza Vaccine Strain. J Virol, 2017. 91(6).
122. Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001. 25(4): p. 402-8.
123. Zhou, S.-L., et al., Characterization of the enterovirus 71 VP1 protein as a vaccine candidate. Journal of Medical Virology, 2015. 87(2): p. 256-262.
124. Zhao, H., et al., Novel recombinant chimeric virus-like particle is immunogenic and protective against both enterovirus 71 and coxsackievirus A16 in mice. Scientific Reports, 2015. 5: p. 7878.
125. Duan, G., et al., Serum inflammatory cytokine levels correlate with hand-foot-mouth disease severity: a nested serial case-control study. PLOS ONE, 2014. 9(11): p. e112676.
126. Li, S., et al., Peripheral T lymphocyte subset imbalances in children with enterovirus 71-induced hand, foot and mouth disease. Virus Res, 2014. 180: p. 84-91.
127. Di Pasquale, A., et al., Vaccine adjuvants: from 1920 to 2015 and beyond. Vaccines (Basel), 2015. 3(2): p. 320-43.
128. Mitkus, R.J., et al., Updated aluminum pharmacokinetics following infant exposures through diet and vaccination. Vaccine, 2011. 29(51): p. 9538-43.
129. Tomljenovic, L. and C.A. Shaw, Aluminum vaccine adjuvants: are they safe? Curr Med Chem, 2011. 18(17): p. 2630-7.
130. Shaw, C.A. and L. Tomljenovic, Aluminum in the central nervous system (CNS): toxicity in humans and animals, vaccine adjuvants, and autoimmunity. Immunol Res, 2013. 56(2-3): p. 304-16.
131. Exley, C., The toxicity of aluminium in humans. Morphologie, 2016. 100(329): p. 51-5.
132. O'Hagan, D.T., et al., The mechanism of action of MF59 - an innately attractive adjuvant formulation. Vaccine, 2012. 30(29): p. 4341-8.
133. O'Hagan, D.T., et al., The history of MF59(®) adjuvant: a phoenix that arose from the ashes. Expert Rev Vaccines, 2013. 12(1): p. 13-30.
134. U.S. Food and Drug Administration. Cervarix [human papillomavirus bivalent (types 16 and 18) vaccine, recombinant]; 2009. https://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm186957.htm
135. Pathinayake, P.S., et al., Inactivated enterovirus 71 with poly-γ-glutamic acid/Chitosan nano particles (PC NPs) induces high cellular and humoral immune responses in BALB/c mice. Archives of Virology, 2018. 163(8): p. 2073-2083.
136. Yee, P.T.I. and C. Laa Poh, Impact of genetic changes, pathogenicity and antigenicity on Enterovirus- A71 vaccine development. Virology, 2017. 506: p. 121-129.