簡易檢索 / 詳目顯示

研究生: 林靖懷
Lin, Ching-Huai
論文名稱: 界面活性劑輔助超音波液相剝離製備石墨烯微片之探討
Study on the preparation of graphene nanoplatelets by using ultrasound-assisted liquid phase exfoliation with surfactant solutions
指導教授: 陳盈良
Chen, Ying-Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 139
中文關鍵詞: 凝析石墨高爐副產物石墨烯微片界面活性劑
外文關鍵詞: kish graphite, blast furnace by-products, graphene nanoplatelets, surfactants
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要I 誌謝IX 目錄X 表目錄XIII 圖目錄XIV 第一章 前言1 1-1 研究動機與目的1 1-2 研究內容2 第二章 文獻回顧4 2-1 一貫作業高爐集塵灰特性與資源化現況 4 2-1-1 一貫作業高爐集塵灰來源及特性4 2-1-2 一貫作業高爐集塵灰資源化現況7 2-1-3 凝析石墨之來源及形成機制8 2-1-4 凝析石墨之富集與純化11 2-2 石墨的特性、種類和發展現況13 2-2-1 石墨的特性與種類13 2-2-2 石墨應用現況及高值化發展15 2-3 石墨烯特性、製備方式與發展現況 18 2-3-1 石墨烯之結構與特性 18 2-3-2 石墨烯薄膜製備方法 22 2-3-3 石墨烯微片製備方法 24 2-3-4 石墨烯應用現況與未來發展27 2-4 液相剝離法30 2-4-1 常見剝離溶液與界面活性劑種類介紹30 2-4-2 液相剝離法種類介紹34 2-4-3 超音波液相剝離液原理及影響因子37 2-5 小結39 第三章 研究材料、設備與方法40 3-1 研究架構與實驗流程40 3-2 研究材料與設備43 3-2-1 樣品前處理43 3-2-2 實驗試藥與儀器設備43 3-3 研究方法與分析45 3-3-1 製備石墨烯微片操作條件探討45 3-3-2 超音波輔助液相剝離實驗程序45 3-3-3 分析方法46 第四章 結果與討論 53 4-1 天然石墨與凝析石墨之基本特性53 4-1-1 基本物理分析53 4-1-2 基本化學分析60 4-1-3 小結64 4-2 以超音波輔助液相剝離製備石墨烯微片之探討66 4-2-1 界面活性劑與石墨初始濃度對石墨烯微片濃度之影響66 4-2-2 超音波振幅與時間、溫度對石墨烯微片濃度之影響70 4-2-3 離心速率及沉降時間對石墨烯微片濃度之影響76 4-2-4 石墨烯微片之特性鑑定80 4-2-5 小結98 4-3 凝析石墨以超音波輔助液相剝離製備石墨烯微片之探討100 4-3-1 界面活性劑與石墨初始濃度對石墨烯微片濃度之影響100 4-3-2 超音波振幅與時間、溫度對石墨烯微片濃度之影響103 4-3-3 離心速率、沉降時間、粒徑對石墨烯微片濃度之影響109 4-3-4 以凝析石墨製備石墨烯微片之特性鑑定114 4-3-5小結130 第五章 結論與建議132 5-1 結論132 5-2 建議134 參考文獻135

    1. 洪坤德,高爐一貫作業煉鋼製程與電弧爐煉鋼製程之生態效益評估-以中部某鋼鐵廠為例,國立雲林科技大學碩士論文,2014。
    2. 洗愛平、張盾、王儀康,鋼中殘餘元素及其對鋼性能的影響,鋼鐵(10), 1999。
    3. 何嘉達,鋼鐵工業懸浮微粒物化特性及暴露評估,國立中山大學碩士論文,2004。
    4. 江尉萍,高爐凝析石墨富集與純化之研究,國立成功大學碩士論文,2019。
    5. 黃順明,陳萬財,鋼鐵業廢棄物資源化案例彙編,經濟部工業局,1996。
    6. 中國鋼鐵股份有限公司,109年度企業社會責任報告書,2020。
    7. 陳俊廷,含石墨亮片物質特性分析及資源化之評估,國立屏東科技大學碩士論文,2007。
    8. Okamoto, H., The C-Fe (carbon-iron) system. Journal of Phase Equilibria 13 (5), 543-565, 1992.
    9. Liu, S. L., Loper, C. R., Kish, a source of crystalline graphite. Carbon 29 (8), 1119-1124, 1991.
    10. Bourelle, E., Kaburagi, Y., Hishiyama, Y., Inagaki, M., STM study of surfaces of kish graphite doped by iron. Carbon 39 (13), 1955-1962, 2001.
    11. Shean, B. J., Cilliers, J. J., A review of froth flotation control. International Journal of Mineral Processing 100 (3-4), 57-71, 2011.
    12. Jara, A. D., Betemariam, A., Woldetinsae, G., Kim, J. Y., Purification, application and current market trend of natural graphite: A review. International Journal of Mining Science and Technology 29 (5), 671-689, 2019.
    13. Survey, B. G., Study on the review of the list of critical raw materials. European Commission ed.; 2017.
    14. Li, X., Yu, J. G., Wageh, S., Al-Ghamdi, A. A., Xie, J., Graphene in photocatalysis: A review. Small 12 (48), 6640-6696, 2016.
    15. 周起忠、閆衛東、尹麗文、徐桂芬、王文利、江偉華,世界石墨資源概况及需求分析,國土資源情報(6),2019.。
    16. 陳志剛、張勇、楊娟、邱滔,膨脹石墨的制備、結構和應用,江蘇大學學報(03),2005。
    17. 黎春燕,氧化還原法石墨烯制備與儲能應用,造紙裝備及材料(03), 2020。
    18. Landau, L., The theory of phase transitions. Nature 138, 840-841, 1936.
    19. Mermin, N. D., Crystalline order in two dimensions. Physical Review 176 (1), 250, 1968.
    20. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A., Electric field effect in atomically thin carbon films. Science 306 (5696), 666-669, 2004.
    21. Geim, A., Novoselov, K., The rise of graphene. Nature Materials 6, 183-191, 2007.
    22. Wallace, P. R., The band theory of graphite. Physical Review 71 (9), 622-634, 1947.
    23. Nirmalraj, P. N., Lutz, T., Kumar, S., Duesberg, G. S., Boland, J. J., Nanoscale mapping of electrical resistivity and connectivity in graphene strips and networks. Nano Letters 11 (1), 16-22, 2011.
    24. Balandin, A. A., Ghosh, S., Bao, W. Z., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C. N., Superior thermal conductivity of single-layer graphene. Nano Letters 8 (3), 902-907, 2008.
    25. Lee, C., Wei, X. D., Kysar, J. W., Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321 (5887), 385-388, 2008.
    26. Fougere, G. E., Riester, L., Ferber, M., Weertman, J. R., Siegel, R. W., Young's modulus of nanocrystalline Fe measured by nanoindentation. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 204 (1-2), 1-6, 1995.
    27. Apell, S. P., Hanson, G., Hagglund, C., High optical absorption in graphene. arXiv:1201.3071, 2012.
    28. de Heer, W. A., Berger, C., Wu, X. S., First, P. N., Conrad, E. H., Li, X. B., Li, T. B., Sprinkle, M., Hass, J., Sadowski, M. L., Potemski, M., Martinez, G., Epitaxial graphene. Solid State Communications 143 (1-2), 92-100, 2007.
    29. Karu, A. E., Beer, M., Pyrolytic formation of highly crystalline graphite films. Journal of Applied Physics 37 (5), 21-79, 1966.
    30. Grant, J. T., Haas, T. W., A study of Ru(0001) and Rh(111) surfaces using LEED and Auger electron spectroscopy. Surface Science 21 (1), 76-85, 1970.
    31. Pan, Y., Shi, D. X., Gao, H. J., Formation of graphene on Ru(0001) surface. Chinese Physics 16 (11), 3151-3153, 2007.
    32. Hummers, W. S., Offeman, R. E., Preparation of graphitic oxide. Journal of the American Chemical Society 80 (6), 1339-1339, 1958.
    33. Tung, V. C., Allen, M. J., Yang, Y., Kaner, R. B., High-throughput solution processing of large-scale graphene. Nature Nanotechnology 4 (1), 25-29, 2009.
    34. Schniepp, H. C., Li, J. L., McAllister, M. J., Sai, H., Herrera-Alonso, M., Adamson, D. H., Prud'homme, R. K., Car, R., Saville, D. A., Aksay, I. A., Functionalized single graphene sheets derived from splitting graphite oxide. Journal of Physical Chemistry B 110 (17), 8535-8539, 2006.
    35. Lotya, M., Hernandez, Y., King, P. J., Smith, R. J., Nicolosi, V., Karlsson, L. S., Blighe, F. M., De, S., Wang, Z. M., McGovern, I. T., Duesberg, G. S., Coleman, J. N., Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. Journal of the American Chemical Society 131 (10), 3611-3620, 2009.
    36. Yang, X. Y., Wang, Y. S., Huang, X., Ma, Y. F., Huang, Y., Yang, R. C., Duan, H. Q., Chen, Y. S., Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. Journal of Materials Chemistry 21 (10), 3448-3454, 2011.
    37. Raji, A. R. O., Salvatierra, R. V., Kim, N. D., Fan, X. J., Li, Y. L., Silva, G. A. L., Sha, J. W., Tour, J. M., Lithium batteries with nearly maximum metal storage. ACS Nano 11 (6), 6362-6369, 2017.
    38. Sui, D., Huang, Y., Huang, L., Liang, J. J., Ma, Y. F., Chen, Y. S., Flexible and transparent electrothermal film heaters based on graphene materials. Small 7 (22), 3186-3192, 2011.
    39. 李丹、肖勁松、馬琳,2025年全球石墨烯市場發展展望,新材料產業
    (03),2019。
    40. Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z., De, S., McGovern, I. T., Holland, B., Byrne, M., Gun'Ko, Y. K., Boland, J. J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A. C., Coleman, J. N., High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology 3 (9), 563-568, 2008.
    41. Smith, R. J., Lotya, M., Coleman, J. N., The importance of repulsive potential barriers for the dispersion of graphene using surfactants. New Journal of Physics 12, 2010.
    42. Vadukumpully, S., Paul, J., Valiyaveettil, S., Cationic surfactant mediated exfoliation of graphite into graphene flakes. Carbon 47 (14), 3288-3294, 2009.
    43. Shin, Y. Y., Just-Baringo, X., Zarattini, M., Isherwood, L. H., Baidak, A., Kostarelos, K., Larrosa, I., Casiraghi, C., Charge-tunable graphene dispersions in water made with amphoteric pyrene derivatives. Molecular Systems Design & Engineering 4 (3), 503-510, 2019.
    44. Guardia, L., Fernandez-Merino, M. J., Paredes, J. I., Solis-Fernandez, P., Villar-Rodil, S., Martinez-Alonso, A., Tascon, J. M. D., High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon 49 (5), 1653-1662, 2011.
    45. Wang, X. Q., Fulvio, P. F., Baker, G. A., Veith, G. M., Unocic, R. R., Mahurin, S. M., Chi, M. F., Dai, S., Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids. Chemical Communications 46 (25), 4487-4489, 2010.
    46. Zhao, W. F., Fang, M., Wu, F. R., Wu, H., Wang, L. W., Chen, G. H., Preparation of graphene by exfoliation of graphite using wet ball milling. Journal of Materials Chemistry 20 (28), 5817-5819, 2010.
    47. Paton, K. R., Varrla, E., Backes, C., Smith, R. J., Khan, U., O'Neill, A., Boland, C., Lotya, M., Istrate, O. M., King, P., Higgins, T., Barwich, S., May, P., Puczkarski, P., Ahmed, I., Moebius, M., Pettersson, H., Long, E., Coelho, J., O'Brien, S. E., McGuire, E. K., Sanchez, B. M., Duesberg, G. S., McEvoy, N., Pennycook, T. J., Downing, C., Crossley, A., Nicolosi, V., Coleman, J. N., Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nature Materials 13 (6), 624-630, 2014.
    48. Rangappa, D., Sone, K., Wang, M. S., Gautam, U. K., Golberg, D., Itoh, H., Ichihara, M., Honma, I., Rapid and direct conversion of graphite crystals into high-yielding, good-quality graphene by supercritical fluid exfoliation. Chemistry-A European Journal 16 (22), 6488-6494, 2010.
    49. Parvez, K., Wu, Z. S., Li, R. J., Liu, X. J., Graf, R., Feng, X. L., Mullen, K., Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. Journal of the American Chemical Society 136 (16), 6083-6091, 2014.
    50. Suslick, K. S., Flannigan, D. J., Inside a collapsing bubble: Sonoluminescence and the conditions during cavitation. Annual Review of Physical Chemistry 59, 659-683, 2008.
    51. Yi, M., Shen, Z. G., A review on mechanical exfoliation for the scalable production of graphene. Journal of Materials Chemistry A 3 (22), 11700-11715, 2015.
    52. 潘冠廷,凝析石墨以超音波輔助有機溶劑製備石墨烯微片之研究,國立成功大學碩士論文,2020。
    53. Cullity, B., Stock, S., Elements of X-ray diffraction. Pearson, New York, 2001.
    54. 行政院環保屬環檢所,行政院環保屬,沈積物、污泥及油脂中金屬元素總量之檢測方法-微波消化原子光譜法,2018。
    55. Mantele, W., Deniz, E., UV-Vis absorption spectroscopy: Lambert-Beer reloaded. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 173, 965-968, 2017.
    56. Childres, I., Jauregui, L. A., Park, W., Cao, H., Chen, Y. P., Raman spectroscopy of graphene and related materials. New developments in photon and materials research 1, 1-20, 2013.
    57. Mori, F., Kubouchi, M., Arao, Y., Effect of graphite structures on the productivity and quality of few-layer graphene in liquid-phase exfoliation. Journal of Materials Science 53 (18), 12807-12815, 2018.
    58. Bischoff, D., Guttinger, J., Droscher, S., Ihn, T., Ensslin, K., Stampfer, C., Raman spectroscopy on etched graphene nanoribbons. Journal of Applied Physics 109 (7), 2011.
    59. Ferrari, A. C., Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications 143 (1-2), 47-57, 2007.
    60. Tuinstra, F., Koenig, J. L., Raman spectrum of graphite. Journal of Chemical Physics 53 (3), 1126-1148, 1970.
    61. Sun, Z. Y., Masa, J., Liu, Z. M., Schuhmann, W., Muhler, M., Highly concentrated aqueous dispersions of graphene exfoliated by sodium taurodeoxycholate: Dispersion behavior and potential application as a catalyst support for the oxygen-reduction reaction. Chemistry-A European Journal 18 (22), 6972-6978, 2012.
    62. Yi, M., Shen, Z. G., Zhang, X. J., Ma, S. L., Vessel diameter and liquid height dependent sonication-assisted production of few-layer graphene. Journal of Materials Science 47 (23), 8234-8244, 2012.
    63. Arao, Y., Kubouchi, M., High-rate production of few-layer graphene by high-power probe sonication. Carbon 95, 802-808, 2015.
    64. Qiao, W., Yan, S. M., He, X. M., Song, X. Y., Li, Z. W., Zhang, X., Zhong, W., Du, Y. W., Effects of ultrasonic cavitation intensity on the efficient liquid-exfoliation of MoS2 nanosheets. RSC Advances 4 (92), 50981-50987, 2014.
    65. Khan, U., O'Neill, A., Porwal, H., May, P., Nawaz, K., Coleman, J. N., Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation. Carbon 50 (2), 470-475, 2012.
    66. Sukumaran, S. S., Jinesh, K. B., Gopchandran, K. G., Liquid phase exfoliated graphene for electronic applications. Materials Research Express 4 (9), 2017.
    67. Shearer, C. J., Slattery, A. D., Stapleton, A. J., Shapter, J. G., Gibson, C. T., Accurate thickness measurement of graphene. Nanotechnology 27 (12), 2016.
    68. Wang, G. X., Yang, J., Park, J., Gou, X. L., Wang, B., Liu, H., Yao, J., Facile synthesis and characterization of graphene nanosheets. Journal of Physical Chemistry C 112 (22), 8192-8195, 2008.
    69. Lund, S., Kauppila, J., Sirkia, S., Palosaari, J., Eklund, O., Latonen, R. M., Smatt, J. H., Peltonen, J., Lindfors, T., Fast high-shear exfoliation of natural flake graphite with temperature control and high yield. Carbon 174, 123-131, 2021.

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE