| 研究生: |
吳佩芳 Wu, Pei-Fang |
|---|---|
| 論文名稱: |
利用光介電泳及介電泳以應用於奈米碳管操控及聚集 Manipulation and Assembly of Carbon Nanotubes between Electrodes by Utilizing Optically-Induced Dielectrophoresis and Dielectrophoresis |
| 指導教授: |
李國賓
Lee, Gwo-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 介電泳 、光介電泳 、奈米碳管 、奈米感測器 、微流體系統 |
| 外文關鍵詞: | Carbon nanotubes, dielectrophoresis, optically-induced dielectrophoresis, nano-sensor |
| 相關次數: | 點閱:91 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於微流體系統在多種領域的應用,有其無可取代的特性,因此越來越多相關的研究被發表出來。奈米材料等級的材料在非常多領域也開始廣泛的運用,尤其是在奈米碳管,由於它的一些優越特性也漸漸開始在很多領域有實質上的運用。
近幾十年,光介電泳平台且應用於微粒子的操控,其最大的優勢在於僅使用市售投影機投射出來的圖形,就可以操控微米粒子和奈米粒子。然而,利用此平台於奈米碳管的應用並不多。本研究提出新光介電泳平台可利用設計好的動畫快速收集操控奈米碳管,可直接利用一開始配置奈米碳管溶液的濃度,直接控制收集的奈米碳管的多寡,進而控制收集奈米碳管聚集量的寬度,此研究中,提出兩種平台收集奈米碳管時間皆可在三分鐘以內完成,當奈米濃度在每毫升0.4毫克時,可聚集最窄奈米碳管的寬度為8微米。接著並提出新方法進一步在光導材料上加上金電極,藉此可結合光介電泳及介電泳將奈米碳管收集於金電極間並加以固定以便未來製作奈米感測器。奈米碳管收集於電極間,由於奈米碳管一開始已溶於光阻裡,藉由曝照紫外光,可將奈米碳管固定於特定的位置,接著要將奈米碳管表層的光阻去除,利用打適度強度氧電漿可去除奈米碳管表層的光阻而不傷害奈米碳管,此過程全部只需耗費三十分鐘以內可完成。此平台對於未來製作奈米感測器可成為一種極方便且大有可為的工具。
In recent years, the micro fabrication of miniature fluidics devices has attracted interest due to certain advantages when applying such devices in a variety of fields. The application of Nano scale materials in various areas continues to steadily expand. Due to their excellent characteristics, the use of carbon nanotubes (CNTs) has increased dramatically and has had a substantial impact in varying fields. Over the past few years, optically induced dielectrophoresis (ODEP) has been proposed and adopted for investigating the manipulation of micro particles and nanoparticles. This study reports an optically driven platform upon which the collection and patterning of CNTs can be accomplished, and addresses a new approach for assembling CNTs between electrodes based on a combination of dielectrophoresis and optically induced dielectrophoresis forces. Metal electrodes and an amorphous silicon layer were first patterned and then used to assemble CNTs. Using moving light patterns, the CNTs were able to be collected in a central area between two metal electrodes. CNTs with different concentrations can be collected and aligned with different sensing element widths. In this report, CNTs collection time can be completed in three minutes or less, the concentration of CNTs was 0.4mg, and the resulting narrowest CNT line width was measured to be 8μm. The immobilization of pre-assembled CNTs was also demonstrated by exposing the CNTs to an ultraviolet light source while fixed at a pre-aligned location. A photoresist asher was then used to remove the cured polymer. This process only takes thirty minutes all to be completed. The development of this new platform can be promising for the massive assembly of CNTs for nano-sensing applications.
[1] N. Maluf, “An introduction to Microelectro mechanical Systems Engineering,” Artech House, Boston, 1, 2000
[2] S. Iijima, “ Helical microtubules of graphitic carbon, ” Nature, 354, 56-58, 1991
[3] L. A. Nagahara, I. Amlani, J. Lewenstein, J, R. K. Tsui, “Directed placement of suspended carbon nanotubes for nanometer-scale assembly,” Applied Physics Letters, 80, 3826-3828, 2002
[4] X. Wang, Q. Li, J.Xie, Z. Jin, J. Wang, Y. Li, K.Jiang, S. Fan, “Fabrication of Ultra long and Electrically Uniform Single-Walled Carbon Nanotubes on Clean Substrates,” Nano Letters, 9, 3137-3141,2009.
[5] D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, “Chemistry of carbon nanotubes,” Chemical Review, 106, 1105-1136, 2006,
[6] A. Jorio, G. Dresselhaus, M.S. Dresselhaus, “Carbon nanotubes,” Springer, Berlin, 2008.
[7] L. A. Nagahara, I. Amlani, J. Lewenstein, R. K. Tsui, “Directed placement of suspended carbon nanotubes for nanometer-scale assembly,” Applied Physics Letters, 80, 3826-3828, 2002
[8] L. Roschier, R. Tarkiainen, M. Ahlskog, M. Paalanen, P. Hakonen, “Manufacture of single electron transistors using AFM manipulation on multiwalled carbon nanotubes,” Microelectronic Engineering, 61, 687-691, 2002
[9] A. C. Dillon, M. J. Heben, “Hydrogen storage using carbon adsorbents: past, present and future,” Applied Physics a-Materials Science & Processing, 72, 133-142, 2001.
[10] W. B. Choi, Y. W. Jin, “Electrophoresis deposition of carbon nanotubes for triode-type field emission display,” Applied Physics Letters, 78, 1547-1549, 2001.
[11] M. Trojanowicz, “Analytical applications of carbon nanotubes: a review,” Trends in Analytical Chemistry, 25, 480-489, 2006.
[12] J. Suehiro, G. Zhou, M. Hara, “Fabrication of a carbon nanotube based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy,” Journal of Physics D: Apply Physics, 36, 109-114, 2003
[13] M. Trojanowicz, “Analytical applications of carbon nanotubes: a review,” Trends Analytical Chemistry, 25, 48-489, 2006.
[14] B. Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath, and P. M. Ajayan,“ Organized Assembly of Carbon Nanotubes,” Nature, 416, 495-496, 2006
[15] J. Hu, M. Ouyang, P. Yang, and C. M. Lieber, “Fabricating carbon nanotube transistor device,” Nature, 399, 48-51, 1999
[16] J. E. Fischer, W. Zhou, J. Vavro, M. C. Llaguno, C. Guthy, and R.Haggenmueller, M. J. Casavant, D. E. Walters, and R. E. Smalley, “Magnetically aligned single wall carbon nanotube films: Preferred orientation and anisotropic transport properties,” Journal of Applied Physics, 93, 2157-2163, 2003
[17] Y. Huang, X. F. Duan, Q. Q. Wei and C. M. Lieber, “Directed Assembly of One-Dimensional Nanostructures into Functional Networks,” Science, 291, 630-633, 2001.
[18] S. G. Rao, L. Huang, W. Setyawan and S. Hong, “Large-scale assembly of carbon nanotubes,” Nature, 425, 36-37, 2003
[19] D. G. Grier, “A revolution in optical manipulation,” Nature, 424, 810-816, 2003
[20] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles,” Optics Letters, 11, 288-290, 1986
[21] A. Ashkin, M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared-laser beams, ” Nature, 330, 769-771, 1987
[22] P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. D. Yang, and J. Liphardt,
“ Optical trapping and integration of semiconductor nanowire assemblies in water, ” Nature Materials, 5, 97-101, 2006.
[23] K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles, ” Optics Letters, 19, 930-932, 1994.
[24] P. C. Ke and M. Gu, “Characterization of trapping force on metallic Mie particles, ” Applied Optics, 38, 160-167, 1999.
[25] S. Tan, H.A. Lopez, C.W. Cai, and Y. Zhang, “Optical trapping of single-walled carbon nanotubes, ” Nano Letters, 8, 1415-1419, 2004
[26]P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. D. Yang, and J. Liphardt,
“Optical trapping and integration of semiconductor nanowire assemblies in water, ” Nat.
Mater., 5, 97-101, 2006.
[27] B. K. Wilson, M. Hegg, X. Miao, G. Cao, and L. Y. Lin, “Scalable nano-particle assembly by efficient light-induced concentration and fusion, ” Optical Express, 16, 17276-17281, 2008.
[28] H. A. Pohl, “Dielectrophoresis,” Cambridge: Cambridge University Press, 1958
[29] G. Fuhr, R. Hagedorn, T. Muller, “Linear Motion of Dielectric Particles and Living Cells in Microfabricated Structures Induced by Traveling Electric Fields” Proceeding of IEEE MEMS, 259-264, 1991.
[30] H. W. Seo, C. S. Han, W.S. Jang, J. Park, “Manipulation of carbon nanotubes and nanowires,” Current Applied Physics, 6, 216-219, 2006
[31] C. Huang, A. Chen, L. Wang, M. Guo and J. Yu, “Electrokinetic measurements of dielectric properties of membrane for apoptotic HL-60 cells on chip-based device,” Biomedical Microdevices, 9, 335-343, 2007
[32] K. Ratanachoo, P. R. C. Gascoyne, and M. Ruchirawat,“ Detection of cellular responses to toxicants by dielectrophoresis,” Biochimica et Biophysica Acta, 1564, 449-458, 2002
[33] W. M. Arnold, R. K. Schmutzler, S. Al-Hasani, D. Krebs, and U. Zimmermann, “Differences in membrane properties between unfertilised and fertilised single rabbit oocytes demonstrated by electro-rotation. Comparison with cells from early embryos,” Biochim. Biophys. Acta, Biomembr, 979, 142-146, 1989
[34] W. Choi, J. S. Kim, D. H. Lee, K. K. Lee, D. B. Koo, and J. K. Park, “Dielectrophoretic oocyte selection chip for in vitro fertilization” Biomedical Microdevices, 10, 337-345, 2008
[35] H. W. Seo, C.S. Han, D.G. Choi, K.S. Kim, and Y.H. Lee, “Controlled assembly of single SWNTs bundle using dielectrophoresis,” Microelectron Engineer, 81, 83-89, 2005
[36] R. H. Chan, C. K. M. Fung, and W. J. Li, “Rapid assembly of carbonnanotubes for nanosensing by dielectrophoretic force,” Nanotechnology, 15, 672-677, 2004
[37] M. Trojanowicz, “Analytical applications of carbon nanotubes: a review,” Trends Analytical Chemistry, 25, 48-489, 2006
[38] P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature, 436, 370-372, 2005
[39] H. Hwang, Y. J. Choi, W. Choi, S. H. Kim, J. Jang and J. K. Park, “Interactive manipulation of blood cells using a lens-integrated liquid crystal display based optoelectronic tweezers system,” Electrophoresis, 29, 1203-1212, 2008
[40] A. T. Ohta, C. Pei. Yu, T. H. Han, J. C. Liao, U. Bhardwaj, E. R. B. McCabe, Y. Fuqu, S. Ren, and M. C. Wu, “Dynamic Cell and Microparticle Control via Optoelectronic Tweezers,” Journal of Microelectromechanical Systems, 16, 491-499, 2007
[41] A. T. Ohta, P.Y. Chiou, H. L. Phan, S. W. Sherwood, J. M. Yang, et al., “Optically Controlled Cell Discrimination and Trapping Using Optoelectronic Tweezers,” IEEE Journal of Selected Topics in Quantum Electronics, 13, 235-243, 2007
[42] S. L. Neale, M. Mazilu, J. I. B. Wilson, K. Dholakia, and T. F. Krauss, “The resolution of optical traps created by light induced dielectrophoresis (LIDEP),” Optical Express, 15, 12619-12626, 2007
[43] A. N. K. Lau, A. T. Ohta, H. L. Phan, H.Y. Hsu, A. Jamshidi, P. Y. Chiou, and M. C.Wu “Antifouling coatings for optoelectronic tweezers,” Lab on Chip, 9, 2952-2957, 2009
[44] S. M. Yang, T. M. Yu, H. P. Huang, M. Y. Ku, L. Hsu, and C.H. Liu, “Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis,” Optical Letters, 35, 1959-1961, 2010
[45] S. J. Williams, A. Kumar, and S. T. Wereley, “Electrokinetic patterning of colloidal particles with optical landscapes,” Lab on chip, 8, 1879-1882, 2008
[46] A. Kumar, J. S. Kwon, S. J. Williams, N. G. Green, N. K. Yip, and S. T. Wereley, “Optically Modulated Electrokinetic Manipulation and Concentration of Colloidal Particles near an Electrode Surface,” Langmuir, 26, 5262-5272, 2010
[47] A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nature Photonics, 2, 86-89, 2008
[48] P.J. Pauzauskie, A. Jamshidi, J.K. Valley, J.H. Satcher, and M.C. Wu, “Parallel trapping of multiwalled carbon nanotubes with optoelectronic tweezers,” Applied Physics Letters, 95, 2009
[49] M. W. Lee, Y. H. Lin, and G. B. Lee, “Manipulation and patterning of carbon nanotubes utilizing optically induced dielectrophoretic forces,” Microfluidics and Nanofluidics, 8, 609-617, 2010
[50] S. Tung, H. Rokadia and W. J. Li, “A Micro Shear Stress Sensor Based on Laterally Aligned Carbon Nanotubes,” Sensors and Actuators A: Physical, 133, 431-438, 2006
[51] A. Vijayaraghavan, S. Blatt, D. Weissenberger, M. Oron-Carl, F. Hennrich, D.Gerthsen, H. Hahn, R. Krupke , “Ultra-large-scale directed assembly of single-walled carbon nanotube devices,” Nano Letters, 7, 1556-1560, 2009
[52] R. Schwarz, F. Wang, and M. Reissner, “Fermi-level dependence of theambipolar diffusion length in amorphous-silicon thin-film transistors,” Applied Physics Letters, 63, 1083-1085, 1993
[53] M. J. Madou, Fundamentals of Microfabrication. New York: CRC Press, 1997.
[54] X. B. Wang, Y. Huang, F. F. Becker, and P. R. C. Gascoyne, “A unified theory of dielectrophoresis and travelling wave dielectrophoresis,” Journal Physics D: Applied Physics., 27, 1571-1574, 1994
[55] T. B. Jones, Electromechanics of Particles, Cambridge University Press, Cambridge, 1995
[56] A. Jamshidi, P. J. Pauzauskie, P. J. Schuck, A. T. Ohta, P. Chiou, J. Chou, P. Yang, and M. C. Wu, “Dynamic manipulation and separation of individual semiconducting and metallic nanowires,” Nature Photonics, 2, 86-89, 2008
[57] D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, “Functional hydrogel structures for autonomous flow control inside microfluidic channels,” Nature, 404, 588-590, 2000
[58] M. Law, L. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nature Materials, 4, 455-459, 2005
校內:2016-09-07公開