簡易檢索 / 詳目顯示

研究生: 陳易鋒
Chen, Yi-Feng
論文名稱: 台灣西南海域海潮流模擬與特性探討
Ocean Current Simulation and Characteristics Analysis in the Southwestern Sea of Taiwan
指導教授: 許泰文
Hsu, Tai-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 70
中文關鍵詞: POM模式洋流潮流
外文關鍵詞: POM model, ocean current, tidal current
相關次數: 點閱:113下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用美國普林斯頓大學發展的數值模式POM (Princeton Ocean Model) 為基礎,建構台灣環島海域三維海潮流模擬系統。此模式是屬於三維有限差分的數值模式,在數值運算方面,分為外模式(external mode) 和內模式 (internal mode) 兩種不同計算技巧的運用可以模擬局部區域水動力特性並大量節省電腦運算時間。本文同時考慮潮流和洋流的共同效應,使計算結果更能符合實際現象。
    洋流邊界條件係由廖等人(2009)所建置之台灣海域洋流模式所提供,利用巢狀網格計算方式縮小計算範圍至台灣西南海域,提高台灣西南海域海潮流模擬的解析度。而潮流模擬所需的邊界條件則由NAO99b (Matsumoto等人,2000)模式所輸出的水位驅動。
    首先將模式以不同邊界條件與格網解析度進行模擬,經由與高雄中洲海域之單點實測資料比較,本文模擬結果呈現合理之一致性。然後將模式應用於台灣附近海域的海潮流模擬,模擬出台灣西南海域存在的黑潮套流(loop current)、及西南吹送流等洋流現象,和前人計算結果所發現的順/逆時針之交替現象一致。

    In this paper, a three-dimensional ocean current model around Taiwan is developed by POM (Princeton Ocean Model). This model is a three-dimensional finite difference model. In the model, two modes are used, one is external mode and the other one is internal mode. The numerical scheme has the advantage to reduce the time of simulation.
    The ocean current boundary is provided by Taiwan ocean current model (Liou, 2009). The computational area is narrowed to the range of Southwestern Sea of Taiwan. The combined effect of tidal and ocean current is included in the present model which will achieve a realistic simulation condition in the ocean. The tidal current boundary is simulated by NAO99b (Matsumoto et al, 2000).
    The ocean current is simulated using different boundary conditions and grid sizes to achieve a higher resolution in the model. The comparison between the numerical results and measured data is fairly satisfactory. The result of simulation also illustrated the loop current in the southwest waters which is identical to previous investigations.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 符號說明 IX 第一章 緒論 1 1-1 研究動機與目的 1 1-2 前人研究 2 1-3 本文組織 4 第二章 POM模式之理論介紹 5 2-1 模式特性 5 2-2 控制方程式 6 2-3 數值方法 16 2-4巢狀格網邊界 22 第三章 海潮流模式建置 24 3-1 海氣象資料 24 3-2 模式設定 27 3-3 海潮流模式之驗證 31 第四章 模擬結果與討論 49 第五章 結論與建議 53 5-1 結論 53 5-2 建議 53 參考文獻 54 附錄A 包氏近似(Boussinesq approximation) 59 附錄B 控制方程式座標轉換推導 62

    1. Aikman, F., Mellor, G. L, Rao, D. B., Ezer, T., Shenin, D., Bosley, K., and Chen, P., “Toward an operational nowcast/forecast system for the U.S. east coast,” Modern Approaches to Data Assimilation in Ocean Modeling, P. Malanotte-Rizzoli, Ed., Elsevier, pp. 347-376 (1996)
    2. Blumberg, A. F. and Mellor, G. L., “Diagnostic and prognostic numerical circulation studies of the South Atlantic Bight,” J. Geophys. Res., 88, pp. 4579-4592 (1983)
    3. Blumberg, A. F. and Mellor, G. L., “A description of a three-dimensional coastal ocean circulation model,” Three-Dimensional Coastal Ocean Models, American Geophysical Union, Washington, D.C., 4, edited by N. Heaps, 208p (1987)
    4. Bowden, K. F. and Hamilton, P., “Some experiments with a numerical model of circulation and mixing in a tidal estuary,” Estuarine and Coastal Marine Science, 3(3), pp. 281-301 (1975)
    5. Ezer, T., “Decadal variabilities of the upper layers of the subtropical North Atlantic: An ocean model study,” J. Phys. Oceanogr., 29(12), pp. 3111-3124 (1999)
    6. Ezer, T. and Mellor, G. L., “A gulf stream model and an altimetry assimilation scheme,” J. Geophys. Res., 96, pp. 8779-8795 (1991)
    7. Ezer, T. and Mellor, G. L., “Simulations of the Atlantic Ocean with a free surface sigma coordinate ocean model,” J. Geophys. Res., 102, pp. 15647-15657 (1997)

    8. Ezer, T. and Mellor, G. L., “Sensitivity studies with the North Atlantic sigma coordinate Princeton Ocean Model,” Dynamics of Atmospheres and Oceans, 32, pp. 155-208 (2000)
    9. Lardner, W. and Cekirge, H. M., “A new algorithm for three- dimensional tidal and storm surge computation,” Appl. Math. Modelling, 12, pp. 471-481 (1988)
    10. Leendertse, J. J., “Aspects of a computational model for long-period water-wave propagation,” RM-5294-PR, Rand Corp. Santa Monica, California (1967)
    11. Liu, C. S., Liu, S. Y., Lallemand, S. E., Lundberg, N. and Reed, D., “Digital Elevation Model Offshore Taiwan and Its Tectonic Implications,” TAO, 9 (4), pp. 705-738 (1998)
    12. Madala, R. V. and Piacsek, S. A., “A semi-implicit numerical model for baroclinic oceans,” J. Comput. Phys., 23, pp. 167-178 (1997)
    13. Matsumoto, K., Takanezawa, T. and Ooe, M., “Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan,” J. Oceanogr., 56, pp. 567-581 (2000)
    14. Mellor, G. L., Users guide for a three-dimensional, primitive equation, numerical ocean model, Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton (2003)
    15. Mellor, G. L., Hakkinen, S., Ezer, T. and Patchen, R., “A generalization of a sigma coordinate ocean model and an intercomparison of model vertical grids,” Ocean Forecastings: Conceptual Basis and Applications, Pinardl, N., Wood, J. D. (Eds), Springer, Berlin, pp. 55-72 (2002)

    16. Mellor, G. L. and Yamada, T., “Development of a turbulence closure model for geophysical fluid problems,” Rev. Geophys. Space Phys., 20, pp. 851-875 (1982)
    17. Nihoul, J. C. J., “Three-dimensional model of tides and storm surges in a shallow well-mixed continental sea,” Dyn. Atmos. Oceans, 2, pp. 29-47 (1977)
    18. Oey, L. Y., “A wetting and drying scheme for POM,” Ocean Modelling, 9, pp. 133-150 (2005)
    19. Oey, L. Y., “An OGCM with movable land-sea boundaries,” Ocean Modelling, 13, pp. 176-195 (2006)
    20. Oey, L. Y., Mellor, G. L. and Hires, R. I., “A three-dimensional simulation of the Hudson-Raritan estuary, Part I: Description of the model and model simulations,” J. Phys. Oceanogr., 15, pp. 1676-1692 (1985a)
    21. Oey, L. Y., Mellor, G. L. and Hires, R. I., “A three-dimensional simulation of the Hudson-Raritan estuary, Part II: Comparison with observation,” J. Phys. Oceanogr., 15, pp. 1693-1709 (1985b)
    22. Oey, L. Y., Mellor, G. L. and Hires, R. I., “A three-dimensional simulation of the Hudson-Raritan estuary, Part III: Salt flux analyses,” J. Phys. Oceanogr., 15, pp. 1711-1720 (1985c)
    23. Park, K. and Kuo, A. Y., “A vertical two dimensional model of estuarine hydrodynamics and water quality,” Special Report in Applied Marine Science and Ocean Engineering, 321, Virginia Institute of Marine Science (1993)
    24. Phillips, N. A., “A coordinate system having some special advantages for numerical forecasting,” J. Meteorol., 14, pp. 184-185 (1957)
    25. Simons, T. J., “Verification of numerical models of Lake Ontario. Part I, ciculation in spring and early summer,” J. Phys. Oceanogr., 4, 507-523 (1974)
    26. Smagorinsky, J., Manabe, S., and Holloway, J. L., “Numerical results from a nine-level general circulation model of the atmosphere,” Mon. Weather Rev., 93, pp. 727-768 (1965)
    27. Stelling, G. S., Wiersma, A. K. and Willemse, J. B. T. M., “Practical aspects of accurate tidal computations,” J. Hydr. Eng., ASCE, 112(9), pp. 802-817 (1986)
    28. Wu, C. –R., T. Y. Tang, and S. F. Lin, “Intra-seasonal variation in the velocity field of the northeastern South China Sea,” Continental Shelf Research, 25, pp. 2075-2083 (2005)
    29. Zavatarelli, M. and Mellor, G. L., “A numerical study of the Mediterranean Sea Circulation,” J. Phys. Oceanogr., 25, pp. 1384-1414 (1995)
    30. 李忠潘等人,「中區汙水處理廠填海造陸工程環境監測計畫-海域環境調查」,四年期計畫執行中,國立中山大學,高雄,(2010)。
    31. 廖建明、莊文傑、許泰文,「台灣鄰近海域洋流模擬之初步探討」,第三十一屆海洋工程研討會論文集,609-614,(2009)。
    32. 林政偉,「感潮河段之計算研究」,碩士論文,國立台灣大學土木工程研究所,台北,(1999)。
    33. 林意淳,「POM模式應用於河口水動力計算之研究」,碩士論文,國立成功大學水利及海洋工程學研究所,台南,(2004)。
    34. 盧鴻復、吳朝榮,「臺灣周邊海域水文及洋流特徵」,海洋技術季刊第十四卷第四期,12-18,(2005)。
    35. 黃良雄、吳仁友、曾鈞敏,「感潮河口之水理計算―以鹽水溪為例」,中國土木水利工程學刊,第十三卷,第三期,533-541,(2001)。
    36. 莊文傑、江中權,「台灣四周海域旋轉潮波系統之同潮圖」,第二十八屆海洋工程研討會論文集,325-330,(2006)。
    37. 葉姍霈,「台灣海域高解析度潮汐模式之建立—敏感度試驗」,碩士論文,國立成功大學水利暨海洋工程學研究所,台南,(2002)。
    38. 吳仁友,「擬似三維海岸水動力計算模式之發展」,碩士論文,國立台灣大學土木工程研究所,台北,(1997)。

    下載圖示 校內:2012-09-01公開
    校外:2012-09-01公開
    QR CODE