簡易檢索 / 詳目顯示

研究生: 江駿豐
Jiang, Jyun-Fong
論文名稱: 以實驗方法探究海底峽谷發展過程與形貌分析
Experimental investigation on submarine canyon evolution and morphological analysis
指導教授: 賴悅仁
Lai, Yueh-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 147
中文關鍵詞: 海底峽谷異重流砂箱實驗數位影像處理無因次化分析
外文關鍵詞: submarine canyon, turbidity currents, sandbox experiment, imaging process, normalized analysis
相關次數: 點閱:158下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 海底峽谷之形成起源一直是海底形貌發展中一個開發不完全的領域,而海下異重流與海底峽谷之間的互動是影響峽谷發展很重要的因素。然而現今的研究中對於海底峽谷之起源發展一直沒有一個定論。本研究即是以實驗研究探討異重流下切海底峽谷的機制及其演化過程。研究中以鹽水模擬異重流,並在實驗過程中持續增加地形之地勢差距,讓海底峽谷隨著地勢差距發展自然演化出複雜的集水區與河道。實驗過程中,我們以縮時攝影完整記錄海底峽谷的演化過程,並且使用雷射掃描技術獲得每個發展階段之三維數值高程模型。
    我們以正攝影像圖進行地形之幾何平面分析,可以獲得峽谷之集水區面積及其發展形態。而在數值高程模型上,可以量測出峽谷之縱剖面及橫斷面。分析結果顯示將各個階段的縱剖面資料無因次化後,出現了高度的自我相似。我們進一步求得峽谷之沖蝕體積,並提供一個簡化後之幾何關係式,可以推估過去與未來之峽谷演化過程。另一方面,我們以三維數值高程模型為基底,進行流量累積模式分析,定量地獲得異重流於各峽谷中的流量剖面。期待本研究之物理模型實驗及初步之數值模式成果,能對於海底峽谷的起源及其發展過程有進一步的瞭解,也希望引領更多的研究人員投入實驗研究。

    Submarine canyon is the main channel to transport material from continental shelf to abyss plan. Interaction between turbidity currents and submarine landscape is important for canyon evolution. But the origin of submarine canyon is not well understood. In this study, we start with an experiment about how the turbidity currents eroded submarine canyon. We substituted turbidity currents with saline flow and gradually increased the relief to evolve both drainage area and channels. The experiment processes are recorded by time-lapse photography. Topographic imaging system is used to construct the DEM for each experiment stage. We use orthophoto for plan-view observation and calculating the area of drainage system. We slice DEMs for longitudinal profiles. The results of normalized longitudinal profiles for each stage shown highly self-similar to each other. We defined the excavated canyon volume and thus derived the simplified geometric equation to estimate canyon volume in the pass and future. We also construct a flow accumulation model through the DEMs to acquire the discharge profile of turbidity currents. Look forward to that our experiment results are not only promoting the studies of canyon evolution, but also inspiring other people to investigate the origin of submarine canyon.

    誌謝 I 摘要 II 目錄 XII 表目錄 XV 圖目錄 XVI 第一章 緒論 1 第二章 實驗配置及影像處理 11 2-1實驗配置 12 2-1-1材料選擇 18 2-1-2 實驗組數參數 20 2-1-3 實驗流程 22 2-2數位影像處理 24 2-2-1 校正 24 2-2-2 影像前處理 27 2-2-3 數值高程模型 33 2-3問題與解決 36 第三章 結果與討論 43 3-1現象觀察與描述 44 3-1-1 實驗整體描述 46 3-1-2 實驗細節描述 49 3-2實驗照片之影像分析 63 3-2-1正攝影像圖(orthophoto) 63 3-2-2峽谷集水區面積分析(analysis of drainage area of canyon) 70 3-3數值高程模型之地形分析 74 3-3-1 地形陰影圖(hillshade) 74 3-3-2峽谷縱剖面圖 78 3-3-3峽谷橫斷面圖 81 3-4 無因次剖面分析 84 3-4-1峽谷縱剖面無因次化方法之介紹 85 3-4-2峽谷縱剖面無因次化方法之應用 88 3-4-3 峽谷橫斷面之無因次化初步結果 100 3-5 峽谷體積計算 109 3-5-1 峽谷體積之計算原理 109 3-5-2 峽谷體積呈現 111 3-5-3 體積簡化公式推導 114 3-5-4 理論與實測結果比較 116 3-5-5體積公式應用(預測峽谷寬) 121 3-6 流量累積模式(FLOW ACCUMULATION MODEL)分析 128 3-6-1 模式介紹 129 3-6-2 模式結果呈現 130 3-6-3 模式結果分析 133 3-7 現地與實驗之比較 136 第四章 結論與建議 141 參考文獻 144

    1. Canals Artigas, M., J. L. Casamor Bermúdez, G. Lastras Membrive, A. Monaco, J. Acosta, S. Berné, B. Loubrieu, P. Weaver, A. Greham, and B. Dennielou (2004), The role of canyons in strata formation, Oceanography, 2004, vol. 17(num. 4), p. 80-91.
    2. Cantelli, A., C. Pirmez, S. Johnson, and G. Parker (2011), Morphodynamic and stratigraphic evolution of self-channelized subaqueous fans emplaced by turbidity currents, J. Sediment. Res., 81(3), 233-247.
    3. Demestre, M., and P. Martin (1993), Optimum exploitation of a demersal resource in the western Mediterranean: the fishery of the deep-water shrimp Aristeus antennutus (Risso, 1816), Sci. Mar., 57(2-3), 175-182.
    4. Gerber, T. P., D. Amblas, M. A. Wolinsky, L. F. Pratson, and M. Canals (2009), A model for the long-profile shape of submarine canyons, J. Geophys. Res.-Earth Surf., 114, 24.
    5. Greene, H. G., N. M. Maher, and C. K. Paull (2002), Physiography of the Monterey Bay National Marine Sanctuary and implications about continental margin development, Marine Geology, 181(1-3), 55-82.
    6. Harris, P. T., and T. Whiteway (2011), Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins, Marine Geology, 285(1-4), 69-86.
    7. Hsu, S. K., J. Kuo, C. L. Lo, C. H. Tsai, W. B. Doo, C. Y. Ku, and J. C. Sibuet (2008), Turbidity Currents, Submarine Landslides and the 2006 Pingtung Earthquake off SW Taiwan, Terr. Atmos. Ocean. Sci., 19(6), 767-772.
    8. Khripounoff, A., A. Vangriesheim, N. Babonneau, P. Crass ous, B. Dennielou, and B. Savoye (2003), Direct observation of intense turbidity current activity in the Zaire submarine valley at 4000 m water depth, Marine Geology, 194(3-4), 151-158.
    9. Lai, S. Y. (2010), Morphodynamics of Coevolving Fluvial and Hyperpycnal Valleys, National Taiwan University, Taipei, doctoral dissertation.
    10. Lai, S. Y. J., T. P. Gerber and D. Amblas (2013), An Experimental Study of Submarine Canyon Evolution on Continental Slopes, paper presented at AGU - Fall Meeting, San Francisco, California, USA.
    11. Lai, S. Y. J., and H. Capart (2007), Two-diffusion description of hyperpycnal deltas, J. Geophys. Res.-Earth Surf., 112(F3), 20.
    12. Lai, S. Y. J., and H. Capart (2009), Reservoir infill by hyperpycnal deltas over bedrock, Geophysical Research Letters, 36, 6.
    13. Lai, S. Y., T. P. Gerber, and D. Amblas (2016), An experimental approach to submarine canyon evolution, Geophysical Research Letters, 43(6), 2741-2747.
    14. Lastras, G., et al. (2011), Understanding sediment dynamics of two large submarine valleys from seafloor data: Blanes and La Fonera canyons, northwestern Mediterranean Sea, Marine Geology, 280(1-4), 20-39.
    15. Métivier, F., E. Lajeunesse, and M.-C. Cacas (2005), Submarine canyons in the bathtub, J. Sediment. Res., 75(1), 6-11.
    16. Mitchell, N. C. (2005), Interpreting long-profiles of canyons in the USA Atlantic continental slope, Marine Geology, 214(1), 75-99.
    17. Ortega-Sanchez, M., F. J. Lobo, A. Lopez-Ruiz, M. A. Losada, and L. M. Fernandez-Salas (2014), The influence of shelf-indenting canyons and infralittoral prograding wedges on coastal morphology: The Carchuna system in Southern Spain, Marine Geology, 347, 107-122.
    18. Paola, C., K. Straub, D. Mohrig, and L. Reinhardt (2009), The "unreasonable effectiveness" of stratigraphic and geomorphic experiments, Earth-Science Reviews, 97(1-4), 1-43.
    19. Parker, G. (1982), Conditions for the ignition of catastrophically erosive turbidity currents, Marine Geology, 46(3-4), 307-327.
    20. Parsons, J. D., C. T. Friedrichs, P. A. Traykovski, D. Mohrig, J. Imran, J. P. Syvitski, G. Parker, P. Puig, J. L. Buttles, and M. H. Garcia (2007), The mechanics of marine sediment gravity flows, Continental Margin Sedimentation: From Sediment Transport to Sequence Stratigraphy, C. Nittrouer, J. Austin, M. Field, J. Syvitski, and P. Wiberg, eds., Blackwell, Oxford, UK, 275-333.
    21. Paull, C. K., W. Ussler, H. G. Greene, R. Keaten, P. Mitts, and J. Barry (2003), Caught in the act: the 20 December 2001 gravity flow event in Monterey Canyon, Geo-Marine Letters, 22(4), 227-232.
    22. Sardà, F., J. Company, N. Bahamón, G. Rotllant, M. Flexas, J. Sánchez, D. Zúñiga, J. Coenjaerts, D. Orellana, and G. Jordà (2009), Relationship between environment and the occurrence of the deep-water rose shrimp Aristeus antennatus (Risso, 1816) in the Blanes submarine canyon (NW Mediterranean), Prog. Oceanogr., 82(4), 227-238.
    23. Schwanghart, W., and N. J. Kuhn (2010), TopoToolbox: A set of Matlab functions for topographic analysis, Environ. Modell. Softw., 25(6), 770-781.
    24. Sequeiros, O. E. (2012), Estimating turbidity current conditions from channel morphology: A Froude number approach, J Geophys Res-Oceans, 117, 19.
    25. Shepard, F. P. (1934), Canyons off the New England coast, Am. J. Sci., 27(157), 24-36.
    26. Shepard, F. P. (1981), Submarine canyons - multiple causes and long-time persistence, AAPG Bull.-Am. Assoc. Petr. Geol., 65(6), 1062-1077.
    27. Reynolds, S., Johnson, J., Kelly, M., Morin, P., Carter, C. (2010), Exploring geology, 2nd ed, McGraw-Hill, New York, 266, ISBN 0-07-727040-1.
    28. Weill, P., E. Lajeunesse, O. Devauchelle, F. Metiver, A. Limare, B. Chauveau, and D. Mouaze (2014), Experimental investigation on self-channelized erosive gravity currents, J. Sediment. Res., 84(6), 487-498.

    下載圖示 校內:2016-12-31公開
    校外:2016-12-31公開
    QR CODE