| 研究生: |
莊勝凱 Chuang, Sheng-Kai |
|---|---|
| 論文名稱: |
原子力顯微鏡探針懸臂樑在流體中以扭曲模式操作之最佳化設計研究 Investigation of the optimal design of Torsional Resonance mode AFM cantilevers operated in fluids |
| 指導教授: |
劉浩志
Liu, Hao-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 原子力顯微鏡 、扭曲共振模式 、掃描探針 、微機電系統製程 、有限元素分析模擬 |
| 外文關鍵詞: | Atomic Force Microscopy, Tosional Resonance mode, Scanning probes, MEMS, ANSYS |
| 相關次數: | 點閱:104 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來,原子力顯微術(Atomic Force Microscope, AFM)對於在水中生物樣品成像的領域上扮演著越來越重要的地位。原子級解析度、快的掃描速率及不傷害樣品表面是對水中生物樣品成像的主要考量,而一新穎的懸臂樑激振量測方式:扭曲共振模式(Torsional Resonance mode,TR mode)正好具備以上這些條件,因此本研究旨在研究適合的懸臂樑設計並製作出此懸臂設計之掃描探針,能適用於TR mode在水中操作下,得到較高的共振頻率及較高的品質因子(Quality factor, Q),以增加在水中成像的掃描速率與解析度;同時輔以較低之彈力常數,減少甚至避免在掃描過程中對於樣品表面的傷害。
本研究利用電腦輔助軟體(Computer-aided software, CAS),包含有限元素分析軟體ANSYS Workbench、微機電專用分析軟體Intellisuite 及AutoCAD繪圖軟體,幫助本實驗對於懸臂樑尺寸、形狀、頻率、彈力常數做估算,並加以討論各種參數改變對於懸臂樑機械性質之變化,得到定性的分析結果。之後將符合需求之懸臂樑設計進行光罩繪製及製程結果模擬,找出最佳化製程參數,搭配微機電系統製程(Micro-Electro- Mechanical-Systems, MEMS)製作出多組不同設計之探針,加以實際測試在水中操作TR mode下之特性。同時在製程上,對於製作厚度較薄之懸臂樑良率不佳的情況做了大幅的改善,改進本實驗室原先製程所採用之Spar設計且改善蝕刻製程,能將蝕刻時間控制在±10分鐘,使得良率大幅上升,接近100%。
之後將實際製作之掃描探針成品,經由實際在水中操作TR mode測試,成功得到懸臂樑能在水中操作TR mode時具有良好的Q值(~60)、高共振頻率(~240kHz)及低彈力常數(~0.136N/m)。同時根據實際測試結果,對於何種懸臂樑能同時得到較高品質因子與較高之共振頻率,做定性之探討。
In recent years, Atomic Force Microscopy (AFM) plays an increasingly important role in characterizing living organisms in fluids. Atomic-level resolution, fast scanning rate, and non-destructive measurement are three highly desirable attributes for imaging living organisms in fluids. A novel driving method for cantilever: Tosional Resonance mode (TR mode) can just satisfy the aforementioned requirements. Therefore, the purpose of this study is fabricating scanning probes with suitable cantilevers designs used in TR mode in fluids (water) to get high resonance frequency, large Quality factor (Q)and low spring constant in order to increase the scanning rate, enhance the resolution, and prevent the surface of samples ,especially soft samples from hurting.
This study utilized computer-aided software (CAS), including ANSYS Workbench, Intellisuite, and AutoCAD to help estimating the dimensions, shapes, frequencies, and spring constants and discussed the influence of these parameters on the mechanical properties of cantilevers. After that, masks are designed for the cantilevers which meet the needs, finding the optimal parameters for processes by processes simulation, several cantilevers with different designs were manufactured by MEMS, and evaluating the characteristics of cantilevers used in TR mode in water. In addition, this study improved the previous spar design to solve the problem occurred when thin cantilevers are fabricated and improving the etching process, making the error of etching time within 10 minutes greatly increased the yields to 100%.
When operated in TR mode in water, we found good results: good Q value (~60), high resonance frequency (~240kHz) and low spring constant (~0.136N/m). A qualitative investigation about cantilevers with higher Q values was discussed as well.
1. Binnig, G., et al., Surface Studies by Scanning Tunneling Microscopy. Physical Review Letters, 1982. 49(1): p. 57.
2. Binnig, G., C.F. Quate, and C. Gerber, Atomic Force Microscope. Physical Review Letters, 1986. 56(9): p. 930.
3. Antognozzi, M., et al., Comparison Between Shear Force and Tapping Mode AFM - High Resolution Imaging of DNA. Single Molecules, 2002. 3(2-3): p. 105-110.
4. Maeda, Y., T. Matsumoto, and T. Kawai, Observation of single- and double-stranded DNA using non-contact atomic force microscopy. Applied Surface Science, 1999. 140(3-4): p. 400-405.
5. C. Su, K.L.B.a.L.H., Torsional resonance mode probe-based instrument and method. U.S. Patent 6945099, 2005.
6. Mayumi Misawa , M.O., Nanotribology with Torsional Resonance Operation. Jpn. J. Appl. Phys. 45 2006: p. 1978 -1980.
7. Reinstädtler, M. and et al., Imaging and measurement of elasticity and friction using the TRmode. Journal of Physics D: Applied Physics, 2005. 38(18): p. R269.
8. Toshi, K. and et al., Topography and phase imaging using the torsional resonance mode. Nanotechnology, 2004. 15(7): p. 731.
9. Huang, L. and C. Su, A torsional resonance mode AFM for in-plane tip surface interactions. Ultramicroscopy, 2004. 100(3-4): p. 277-285.
10. Chih-Wen, Y. and H. Ing-Shouh, Soft-contact imaging in liquid with frequency-modulation torsion resonance mode atomic force microscopy. Nanotechnology, 2010. 21(6): p. 065710.
11. The Scanning Tunneling Microscope. Available: http://www.iap.tuwien.ac.at/www/surface/stm_gallery/stm_schematic
12. C. R. Calladine, H.R.D., Understanding DNA, the molecule and how it works.
. Acedemic Press Limited, San Diego, USA., 1997.
13. Binnig, G., et al., 7 <rm>x</rm> 7 Reconstruction on Si(111) Resolved in Real Space. Physical Review Letters, 1983. 50(2): p. 120.
14. 黃英碩, 掃描探針顯微術的原理及應用. 科儀新知, 2005. 26(4): p. 7-17.
15. 汪建民, 材料分析. 1998.
16. Lennard-Jones, J.E.C., Proceedings of the Physical Society, (1931). 43: p. 461.
17. 林明彥, e.a., 原子力顯微儀的原理(上). 科儀新知, 2005. 26(2): p. 46-57.
18. Bharat, B., Handbook of Micro/Nano Tribology:CRC press. 1999.
19. Kuhle, A., A.H. Sorensen, and J. Bohr, Role of attractive forces in tapping tip force microscopy. Journal of Applied Physics, 1997. 81(10): p. 6562-6569.
20. Yang, J., T. Ono, and M. Esashi, Mechanical behavior of ultrathin microcantilever. Sensors and Actuators A: Physical, 2000. 82(1-3): p. 102-107.
21. Saya, D., et al., Fabrication of single-crystal Si cantilever array. Sensors and Actuators A: Physical, 2002. 95(2-3): p. 281-287.
22. http://www.parkafm.com/AFM_guide/true_non_contact_mode.php.
23. Albrecht, T.R., et al., Frequency modulation detection using highQ cantilevers for enhanced force microscope sensitivity. Journal of Applied Physics, 1991. 69(2): p. 668-673.
24. Viani, M.B., et al., Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscope designed for small cantilevers. Review of Scientific Instruments, 1999. 70(11): p. 4300-4303.
25. Butt, H.J., et al., SCAN SPEED LIMIT IN ATOMIC FORCE MICROSCOPY. Journal of Microscopy-Oxford, 1993. 169: p. 75-84.
26. J.M. Gere, S.P.T., "Mechanics of materials," forth ed:McGraw-Hill. 1998: p. 210.
27. Timoshenko, G.a., Mechanics of Materials.
28. Butt, H.-J., B. Cappella, and M. Kappl, Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports, 2005. 59(1-6): p. 1-152.
29. Great Events of the Twentieth Century. p. 73-84.
30. Sokolnikoff, I.S., Mathematical theory of elasticity. 1956: McGraw-Hill.
31. Landau, L.D. and E.M. Lifshitz, Elasticity Theory. 1975: Pergamon Press.
32. Young, W.C. and R.G. Budynas, Roark's Formulas for Stress and Strain (7th Edition). 2002, McGraw-Hill.
33. Chen, G.Y., et al., Resonance response of scanning force microscopy cantilevers. Review of Scientific Instruments, 1994. 65(8): p. 2532-2537.
34. D.Sarid, Scanning Force Microscopy. Oxford University Press, New York, 1991.
35. Sader, J.E., Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. Journal of Applied Physics, 1998. 84(1): p. 64-76.
36. Green, C.P. and J.E. Sader, Torsional frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. Journal of Applied Physics, 2002. 92(10): p. 6262-6274.
37. Chon, J.W.M., P. Mulvaney, and J.E. Sader, Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids. Journal of Applied Physics, 2000. 87(8): p. 3978-3988.
38. Van Eysden, C.A. and J.E. Sader, Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope: Arbitrary mode order. Journal of Applied Physics, 2007. 101(4): p. 044908-11.
39. Van Eysden, C.A. and J.E. Sader, Frequency response of cantilever beams immersed in compressible fluids with applications to the atomic force microscope. Journal of Applied Physics, 2009. 106(9): p. 094904-094904-8.
40. Van Eysden, C.A. and J.E. Sader, Small amplitude oscillations of a flexible thin blade in a viscous fluid: Exact analytical solution. Physics of Fluids, 2006. 18(12): p. 123102-11.
41. Sader, J.E., et al., Method for the calibration of atomic force microscope cantilevers. Review of Scientific Instruments, 1995. 66(7): p. 3789-3798.
42. Batchelor, G.K., Fluid Dynamics. Cambridge University Press, Cambridge, UK, 1974.
43. Chu, W.-H., Tech. Rep. No.2, DTMB, Contract NObs-86396(X). South-west Research Institute, San Antonio, Texas, 1963.
44. Knight, C.E., The Finite Element Method in Mechanical Design:PWS-KENT. 1993.
45. Petersen, K.E., Silicon as a mechanical material. Proceedings of the IEEE, 1982. 70(5): p. 420-457.
46. Ansys Element Reference SOLID 186.
47. Su, Y., et al., Fabrication of improved piezoresistive silicon cantilever probes for the atomic force microscope. Sensors and Actuators A: Physical, 1997. 60(1-3): p. 163-167.
48. Su, Y., et al., Piezoresistive silicon V-AFM cantilevers for high-speed imaging. Sensors and Actuators A: Physical, 1999. 76(1-3): p. 139-144.
49. G.T.A.Kovacs, Micromachined Transducers Sourcesbook:McGraw-Hill. 1998. ,pp. 79. .
50. RIE蝕刻矽與氮化矽之參數分析. 2003: p. p.1-9.
51. Tanaka, H., et al., Fast etching of silicon with a smooth surface in high temperature ranges near the boiling point of KOH solution. Sensors and Actuators A: Physical, 2004. 114(2-3): p. 516-520.
52. Sato, K., et al., Characterization of orientation-dependent etching properties of single-crystal silicon: effects of KOH concentration. Sensors and Actuators A: Physical, 1998. 64(1): p. 87-93.
53. Zubel, I., The influence of atomic configuration of (h k l) planes on adsorption processes associated with anisotropic etching of silicon. Sensors and Actuators A: Physical, 2001. 94(1-2): p. 76-86.
54. Zubel, I. and M. Kramkowska, The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions. Sensors and Actuators A: Physical, 2001. 93(2): p. 138-147.
55. Fulong, Y., et al., Micro-fabrication of crystalline silicon by controlled alkali etching. Journal of Materials Processing Technology, 2004. 149(1-3): p. 567-572.
56. Zubel, I. and M. Kramkowska, Etch rates and morphology of silicon (h k l) surfaces etched in KOH and KOH saturated with isopropanol solutions. Sensors and Actuators A: Physical, 2004. 115(2-3): p. 549-556.
57. van Veenendaal, E., et al., Micromorphology of single crystalline silicon surfaces during anisotropic wet chemical etching in KOH and TMAH. Sensors and Actuators A: Physical, 2001. 93(3): p. 219-231.
58. Shikida, M., et al., Differences in anisotropic etching properties of KOH and TMAH solutions. Sensors and Actuators A: Physical, 2000. 80(2): p. 179-188.
59. Sekimura, M. Anisotropic etching of surfactant-added TMAH solution. in Micro Electro Mechanical Systems, 1999. MEMS '99. Twelfth IEEE International Conference on. 1999.
60. Wind, R.A. and M.A. Hines, Macroscopic etch anisotropies and microscopic reaction mechanisms: a micromachined structure for the rapid assay of etchant anisotropy. Surface Science, 2000. 460(1-3): p. 21-38.
61. http://www.spmtips.com/csc/38.
62. Wenhai Han, F.M.S., Force Spectroscopy with the Atomic Force Microscope Application Note. Agilent Technologies.
63. Weigert, S., M. Dreier, and M. Hegner, Frequency shifts of cantilevers vibrating in various media. Applied Physics Letters, 1996. 69(19): p. 2834-2836.
64. Ryan, C.T. and et al., Non-monotonic pressure dependence of resonant frequencies of microelectromechanical systems supported on squeeze films. Journal of Micromechanics and Microengineering, 2011. 21(2): p. 025003.
65. Mullin, N. and J. Hobbs, Torsional resonance atomic force microscopy in water. Applied Physics Letters, 2008. 92(5): p. 053103-3.
66. Song, Y. and B. Bhushan, Coupling of cantilever lateral bending and torsion in torsional resonance and lateral excitation modes of atomic force microscopy. Journal of Applied Physics, 2006. 99(9): p. 094911-12.
67. Voigt, F., F. Krohs, and R. Gerbach. Flexural-torsional resonance mode of a chip cantilever system: Applications to nanomachining. 2009: AVS.
校內:2021-01-01公開