簡易檢索 / 詳目顯示

研究生: 陳厚谷
Chen, Ho-Ku
論文名稱: 蝴蝶蘭 PaFVE 基因參與低溫調控開花
PaFVE involved in low temperature flowering in Phalaenopsis aphrodite subsp. formosana
指導教授: 詹明才
Chan, Ming-Tsair
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 熱帶植物科學研究所
Institute of Tropical Plant Sciences
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 107
中文關鍵詞: 蝴蝶蘭PaFVE低溫開花
外文關鍵詞: PaFVE, low temperature, flowering, Phalaenopsis
相關次數: 點閱:157下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用臺灣原生種白花蝴蝶蘭”臺灣阿嬤” (Phalaenopsis aphrodite subsp. formosana) 為材料。為瞭解臺灣阿嬤中 FVE 基因的功能,首先利用 RT-PCR 與5’/3’RACE (Rapid amplification of cDNA end) 技術分離出 PaFVE cDNA。其 cDNA 全長為 1,872 bp,譯碼區有 1,407 bp,可轉譯出 468 個胺基酸。經比對結果顯示 PaFVE 與其他物種 FVE 基因相似度均達到 75% 以上,南方氏雜合分析結果顯示蝴蝶蘭染色體 DNA 僅有一個 FVE 基因。胺基酸功能性區域分析結果顯示 PaFVE 具有5個 WD-40 重要區域,與模式植物水稻和阿拉伯芥相似。親源演化分析結果發現,單子葉植物與雙子葉植物 FVE 基因明顯分為兩群。此外,胺基酸序列比對結果發現阿拉伯芥 FVE 較水稻與臺灣阿嬤多出一段 NLS (nuclear localization signal)序列,但是蛋白質定位分析結果顯示 PaFVE-GFP 蛋白產物會表現於各種細胞之核內。利用北方氏雜合分析結果顯示 PaFVE 主要表現於花苞組織並隨著發育成熟表現量會明顯降低,即時定量 PCR (Quantitative RT-PCR) 結果顯示此基因會受到環境低溫的刺激而誘導。另外,利用 VIGS (Virus induced gene silencing) 試驗降低此基因在蝴蝶蘭中的表現量,發現 PaFVE 基因與調控花苞的成熟開啟有顯著的關連性,但與生殖生長早期花梗的延長和後期花部器官型態的發育沒有顯著的關連。即時定量 PCR 分析結果顯示,此基因可能是透過調控下游開花基因 PaSOC1、PaSOC1L 和 PaAGL24 的表現量影響花苞成熟開啟的時間。此外,將 PaFVE 基因大量表現在野生型阿拉伯芥中可觀察到轉殖植物提早開花現象,即時定量 PCR 分析結果顯示 PaFVE 基因誘導內生性開花基因 LFY 的表現,可能為轉殖植物出現提早開花現象的原因。最後,根據 PaFVE 啟動子序列分析結果推測,該基因在其生長發育過程中所受到環境及內在因子之影響非常廣,可能參與許多生長調節機制,為植物正常生長發育不可缺少之重要基因。

    In this study, we used the Phalaenopsis aphrodite subsp. formosana, one of the native Phalaenopsis species in Taiwan, to study the function of FLOWERING LOCUS VE (FVE) in orchid. Firstly, we isolated the PaFVE from Phalaenopsis orchid by using RT-PCR and 5’/3’ RACE (rapid amplification of cDNA end). The full-length cDNA of PaFVE was 1,872 base pair (bp) and contained a 1,407 bp open reading frame (ORF) encoding for 468 amino-acid residues. The amino acid sequence of the PaFVE protein was 75% identical with FVE homolog in rice and Arabidopsis. In addition, the amino acid sequence of PaFVE contained five conserved WD40 repeat domains. Moreover the N-terminial of Arabidopsis FVE contains a nuclear localization signal (NLS) as comparing with that of rice and Phalaenopsis aphrodite. Southern blot analysis indicated that the PaFVE is a single-copy gene in Phalaenopsis genome. Phylogenetic analysis revealed that PaFVE was clustered with the monocot genes. The FVE::GFP protein is localized in nucleus after transient expression. Northern blot analysis indicated that relative high amount of gene expression of PaFVE was detected in the flower bud in comparison with the later stage of flower development. Further quantitative RT-PCR indicated that the expression of PaFVE gene was up-regulated in low temperature treated leaves. Furthermore, the functional studies of PaFVE by virus induced gene silencing (VIGS) showed significant delay in flower bud development time, but not flower stalk initiation and floral organ morphology in orchid. These results implied that down-regulation of FVE may suppress the expression of flowering relate genes PaSOC1、PaSOC1L and PaAGL24. Moreover, quantitative RT-PCR showed that, the early flowering phenotype of transgenic PaFVE Arabidopsis plant is through up-regulating LFY expression. Finally, according to PaFVE promoter sequence analysis results suggesting that PaFVE maybe involved in different growth regulatory mechanism for normal growth and development in Phalaenopsis orchid.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 緒論 1 第一章 前言 2 1. 蝴蝶蘭之分類地位及型態簡介 2 2. 溫度對蝴蝶蘭開花之影響 3 3. 植物生長階段的轉換 4 4. 開花負調控基因 FLC (Flowering Locus C) 5 5. 自發性調控途徑 (Autonomus pathway) 6 6. 開花途徑整合者 (Floral pathway integrators) 7 7. 自發性調控開花途徑基因 FVE 8 研究目的 9 第二章 材料與方法 11 一、材料 11 二、實驗方法 11 1. 蝴蝶蘭 total RNA 的純化 11 2. 以 454 定序蝴蝶蘭 cDNA 12 3. 蝴蝶蘭 FVE 基因序列的選殖 13 4. 序列分析 16 5. 反轉錄聚合酶連鎖反應 (Reverse transcription PCR) 16 6. 轉形試驗 (transformation) 17 7. 微量製備質體DNA 18 8. 載體與基因的構築 (construction) 19 9. 核苷酸定序 (sequencing) 20 10. PaFVE 細胞定位 (cell localization) 分析 20 11. 蝴蝶蘭總量DNA (total DNA) 的萃取 21 12. 南方氏雜合實驗(Southern hybridization) 22 13. 北方雜合實驗 (northern hybridization) 24 14. 即時定量 PCR (quantitative RT-PCR) 偵測基因表現 26 15. 農桿菌的轉形作用 (transformation) 27 16. 阿拉伯芥轉基因實驗 (transgenic Arabidopsis) 27 17. 阿拉伯芥總量 DNA (total DNA) 之萃取 28 18. 南方氏雜合實驗(Southern hybridization) 29 19. 即時定量 PCR (quantitative RT-PCR) 偵測基因表現 29 20. 蝴蝶蘭 VIGS (virus induced gene sciencing) 試驗 30 21. 蝴蝶蘭病毒快速檢測法 31 第三章 結果 33 一、環境低溫誘導台灣阿嬤 (Phalaenopsis aphrodite) 抽梗開花 33 二、台灣阿嬤 PaFVE cDNA 之選殖 34 三、台灣阿嬤 PaFVE 基因之組成 35 四、台灣阿嬤 PaFVE 胺基酸序列與親源演化分析 35 五、台灣阿嬤 PaFVE 蛋白內定位分析 36 六、台灣阿嬤 PaFVE mRNA 長距離運送分析 36 七、台灣阿嬤 PaFVE 基因表現分析 37 八、台灣阿嬤 PaFVE 受環境低溫的影響 38 九、台灣阿嬤花苞組織 PaFVE 基因表現分析 38 十、分析台灣阿嬤 PaFVE 基因的生物功能 39 十一、台灣阿嬤 PaFVE 基因轉殖阿拉伯芥性狀分析 40 十二、35S::PaFVE 阿拉伯芥轉殖株中開花基因的表現 41 十三、台灣阿嬤 PaFVE 啟動子之選殖與調控序列分析 42 第四章 討論 43 一、台灣阿嬤 (Phalaenopsis aphrodite) PaFVE cDNA 選殖與特性分析 43 二、台灣阿嬤 PaFVE 胺基酸序列與親源演化分析 44 三、台灣阿嬤 PaFVE 蛋白內定位分析 44 四、台灣阿嬤 PaFVE mRNA 長距離運送分析 46 五、台灣阿嬤 PaFVE 基因表現分析 47 七、台灣阿嬤 PaFVE 受環境低溫的影響 48 八、分析台灣阿嬤 PaFVE 基因的生物功能 49 九、台灣阿嬤 PaFVE 基因轉殖阿拉伯芥性狀分析 51 十、35S::PaFVE 阿拉伯芥轉殖株中開花基因的表現 52 十一、台灣阿嬤 PaFVE 啟動子之調控序列分析 53 第五章 未來展望 55 圖表 56 參考資料 86 附錄 97

    李哖、李菁敏. 蝴蝶蘭之花期調節. 台中區農業改良場特刊. 10, 27-44. (1987).
    Abou-Elwafa, S.F., Buttner, B., Chia, T., Schulze-Buxloh, G., Hohmann, U., Mutasa-Gottgens, E., Jung, C., and Muller, A.E. Conservation and divergence of autonomous pathway genes in the flowering regulatory network of Beta vulgaris. J Exp Bot. 62, 3359-3374. (2010).
    Amasino, R. Vernalization, competence, and the epigenetic memory of winter. Plant Cell 16, 2553-2559. (2004).
    Ausin, I., Alonso-Blanco, C., Jarillo, J.A., Ruiz-Garcia, L., and Martinez-Zapater, J.M. Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nat Genet 36, 162-166. (2004).
    Baek, I.S., Park, H.Y., You, M.K., Lee, J.H., and Kim, J.K. Functional conservation and divergence of FVE genes that control flowering time and cold response in rice and Arabidopsis. Mol Cells 26, 368-372. (2008).
    Bastow, R., Mylne, J.S., Lister, C., Lippman, Z., Martienssen, R.A., and Dean, C. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427, 164-167. (2004).
    Baurle, I., Smith, L., Baulcombe, D.C., and Dean, C. Widespread role for the flowering-time regulators FCA and FPA in RNA-mediated chromatin silencing. Science 318, 109-112. (2007).
    Bernier, G., and Perilleux, C. A physiological overview of the genetics of flowering time control. Plant Biotechnol J 3, 3-16. (2005).
    Bhattacharjee, S.K. Photoperiodism effects on growth and flowering in some species of orchids. Hort. Abstr. 50, 696. (1979).
    Blazquez, M. Flower development pathways. J Cell Sci 113 ( Pt 20), 3547-3548. (2000).
    Blazquez, M.A., Ahn, J.H., and Weigel, D. A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat Genet 33, 168-171. (2003).
    Borner, R., Kampmann, G., Chandler, J., Gleissner, R., Wisman, E., Apel, K., and Melzer, S. A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J 24, 591-599. (2000).
    Boss, P.K., Bastow, R.M., Mylne, J.S., and Dean, C. Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16 Suppl, S18-31. (2004).
    Caicedo, A.L., Stinchcombe, J.R., Olsen, K.M., Schmitt, J., and Purugganan, M.D. Epistatic interaction between Arabidopsis FRI and FLC flowering time genes generates a latitudinal cline in a life history trait. Proc Natl Acad Sci U S A 101, 15670-15675. (2004).
    Chia, T.F., Chan, Y.S., and Chua, N.H. The firefly luciferase gene as a non-invasive reporter for Dendrobium transformation. The Plant Journal 6, 441-446. (1994).
    Christenson, E.A. Phalaenosis: a Monograph, Timber press, Portland, Oregon. (2001).
    Clough, S.J., and Bent, A.F. Floral dip: a simplified method forAgrobacterium mediated transformation of Arabidopsis thaliana. The Plant Journal 16, 735-743. (1998).
    Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C., and Coupland, G. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316, 1030-1033. (2007).
    Creelman, R.A., ; Mullet, J.E.,. BIOSYNTHESIS AND ACTION OF JASMONATES IN PLANTS. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 355-381. (1997).
    Demeulemeester, M.A.C., ; Stallen, N. Van., ; Proft, M.P. De. Degree of DNA methylation in chicory (Cichorium intybus L.): influence of plant age and vernalization. Plant Science 142, 101-108. (1999).
    Deng, X.W., Caspar, T., and Quail, P.H. cop1: a regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev 5, 1172-1182. (1991).
    Finnegan, E.J.D., S. E. . Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana. Nucleic Acids Research 21, 2383-2388. (1993).
    Guitton, A.E., Page, D.R., Chambrier, P., Lionnet, C., Faure, J.E., Grossniklaus, U., and Berger, F. Identification of new members of Fertilisation Independent Seed Polycomb Group pathway involved in the control of seed development in Arabidopsis thaliana. Development 131, 2971-2981. (2004).
    Haywood, V., Yu, T.S., Huang, N.C., and Lucas, W.J. Phloem long-distance trafficking of GIBBERELLIC ACID-INSENSITIVE RNA regulates leaf development. Plant J 42, 49-68. (2005).
    He, Y., and Amasino, R.M. Role of chromatin modification in flowering-time control. Trends Plant Sci 10, 30-35. (2005).
    He, Y., Michaels, S.D., and Amasino, R.M. Regulation of flowering time by histone acetylation in Arabidopsis. Science 302, 1751-1754. (2003).
    Helliwell, C.A., Wood, C.C., Robertson, M., James Peacock, W., and Dennis, E.S. The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J 46, 183-192. (2006).
    Henderson, I.R., Liu, F., Drea, S., Simpson, G.G., and Dean, C. An allelic series reveals essential roles for FY in plant development in addition to flowering-time control. Development 132, 3597-3607. (2005).
    Hepworth, S.R., Valverde, F., Ravenscroft, D., Mouradov, A., and Coupland, G. Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J 21, 4327-4337. (2002).
    Higgins, J.A., Bailey, P.C., and Laurie, D.A. Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses. PLoS One 5, e10065. (2010).
    Higuch, H. Advancing flowering in Phalaenopsis by transferring the plants to a higher altitude during the summer. Research Bul. of the Aichi-Ken Agricultural Research Center 10, 42-45. (1978).
    Kim, H.J., Hyun, Y., Park, J.Y., Park, M.J., Park, M.K., Kim, M.D., Lee, M.H., Moon, J., Lee, I., and Kim, J. A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. Nat Genet 36, 167-171. (2004).
    Koornneef, M., Alonso-Blanco, C., Peeters, A.J., and Soppe, W. Genetic Control of Flowering Time in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol 49, 345-370. (1998).
    Kornneef, Alonso-Blanco, Peters, A.J., and Soppe, W. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229, 57-66. (1991).
    Krizek, and Lawson. Accelerated growth of Cattleya and Phalaenopsis under controlled environmental conditions. Am. Orchid Soc. Bul. 43, 503-510. (1974).
    Lee, H., Suh, S.S., Park, E., Cho, E., Ahn, J.H., Kim, S.G., Lee, J.S., Kwon, Y.M., and Lee, I. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev 14, 2366-2376. (2000).
    Lee, I., Aukerman, M.J., Gore, S.L., Lohman, K.N., Michaels, S.D., Weaver, L.M., John, M.C., Feldmann, K.A., and Amasino, R.M. Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis. Plant Cell 6, 75-83. (1994).
    Lee, J., Oh, M., Park, H., and Lee, I. SOC1 translocated to the nucleus by interaction with AGL24 directly regulates leafy. Plant J 55, 832-843. (2008).
    Lee, N. Effect of temperature on growth and the flowering of Phalaenopsis formosana Hayata. Proc. Nat. Sci. Council. 5, 41-48. (1981).
    Levy, Y.Y., and Dean, C. The transition to flowering. Plant Cell 10, 1973-1990. (1998).
    Li, C., Zhang, K., Zeng, X., Jackson, S., Zhou, Y., and Hong, Y. A cis element within flowering locus T mRNA determines its mobility and facilitates trafficking of heterologous viral RNA. J Virol 83, 3540-3548. (2009).
    Liau, C.H., Lu, J.C., Prasad, V., Hsiao, H.H., You, S.J., Lee, J.T., Yang, N.S., Huang, H.E., Feng, T.Y., Chen, W.H., and Chan, M.T. The sweet pepper ferredoxin-like protein (pflp) conferred resistance against soft rot disease in Oncidium orchid. Transgenic Res 12, 329-336. (2003).
    Lim, M.H., Kim, J., Kim, Y.S., Chung, K.S., Seo, Y.H., Lee, I., Hong, C.B., Kim, H.J., and Park, C.M. A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. Plant Cell 16, 731-740. (2004).
    Liu, C., Chen, H., Er, H.L., Soo, H.M., Kumar, P.P., Han, J.H., Liou, Y.C., and Yu, H. Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development 135, 1481-1491. (2008).
    Lucas, W.J., Yoo, B.C., and Kragler, F. RNA as a long-distance information macromolecule in plants. Nat Rev Mol Cell Biol 2, 849-857. (2001).
    Michaels, S.D., and Amasino, R.M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. The Plant Cell 11, 949-956. (1999).
    Moon, J., Lee, H., Kim, M., and Lee, I. Analysis of flowering pathway integrators in Arabidopsis. Plant Cell Physiol 46, 292-299. (2005).
    Morel, P., Trehin, C., Breuil-Broyer, S., and Negrutiu, I. Altering FVE/MSI4 results in a substantial increase of biomass in Arabidopsis-the functional analysis of an ontogenesis accelerator. Molecular Breeding 23, 239-257. (2009).
    Nemeth, K., Salchert, K., Putnoky, P., Bhalerao, R., Koncz-Kalman, Z., Stankovic-Stangeland, B., Bako, L., Mathur, J., Okresz, L., Stabel, S., Geigenberger, P., Stitt, M., Redei, G.P., Schell, J., and Koncz, C. Pleiotropic control of glucose and hormone responses by PRL1, a nuclear WD protein, in Arabidopsis. Genes Dev 12, 3059-3073. (1998).
    Ochman, H., Gerber, A.S., and Hartl, D.L. Genetic applications of an inverse polymerase chain reaction. Genetics 120, 621. (1988).
    Pazhouhandeh, M., Molinier, J., Berr, A., and Genschik, P. MSI4/FVE interacts with CUL4-DDB1 and a PRC2-like complex to control epigenetic regulation of flowering time in Arabidopsis. Proc Natl Acad Sci U S A 108, 3430-3435. (2011).
    Pelacho, A.M., and Mingo-Castel, A.M. Jasmonic Acid induces tuberization of potato stolons cultured in vitro. Plant Physiol 97, 1253-1255. (1991).
    Pelczar, P., Kalck, V., Gomez, D., and Hohn, B. Agrobacterium proteins VirD2 and VirE2 mediate precise integration of synthetic T-DNA complexes in mammalian cells. EMBO Rep 5, 632-637. (2004).
    Quesada, V., Dean, C., and Simpson, G.G. Regulated RNA processing in the control of Arabidopsis flowering. Int J Dev Biol 49, 773-780. (2005).
    Roter, G.B. The photoperiod and temperature responses of orchids. In: C. L. Wither(ed). The orchids- A Scientific Survey. NewYork. Ronald Press., 397-417. (1959).
    Ruiz-Garcia, L., Madueno, F., Wilkinson, M., Haughn, G., Salinas, J., and Martinez-Zapater, J.M. Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis. Plant Cell 9, 1921-1934. (1997).
    Sakanishi, Y., and Imanishi, H. Effect of temperature on growth and flowering of Phalaenopsis ambilis. Bull. Univ. Osaka Pref., Ser. B 32, 1-9. (1980).
    Sanda, S.L., and Amasino, R.M. Ecotype-Specific Expression of a Flowering Mutant Phenotype in Arabidopsis thaliana. Plant Physiol 111, 641-644. (1996).
    Searle, I., He, Y., Turck, F., Vincent, C., Fornara, F., Krober, S., Amasino, R.A., and Coupland, G. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev 20, 898-912. (2006).
    Seo, E., Lee, H., Jeon, J., Park, H., Kim, J., Noh, Y.S., and Lee, I. Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC. Plant Cell 21, 3185-3197. (2009).
    Shindo, C., Aranzana, M.J., Lister, C., Baxter, C., Nicholls, C., Nordborg, M., and Dean, C. Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis. Plant Physiol 138, 1163-1173. (2005).
    Simpson, G.G. The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Curr Opin Plant Biol 7, 570-574. (2004).
    Simpson, G.G., and Dean, C. Arabidopsis, the Rosetta stone of flowering time? Science 296, 285-289. (2002).
    Simpson, G.G., Dijkwel, P.P., Quesada, V., Henderson, I., and Dean, C. FY is an RNA 3' end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113, 777-787. (2003).
    Smith, T.F., Gaitatzes, C., Saxena, K., and Neer, E.J. The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24, 181-185. (1999).
    Suarez-Lopez, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., and Coupland, G. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410, 1116-1120. (2001).
    Sweet, H.R. The Genus Phalaenosis. Day Printing Corp., Pomona, California. (1980).
    Van, T.T. Methods of acceleration of growth and flowering in a few species of orchids. Amer. Orchid Soc. Bull. 43, 699-707. (1974).
    Veley, K.M., and Michaels, S.D. Functional redundancy and new roles for genes of the autonomous floral-promotion pathway. Plant Physiol 147, 682-695. (2008).
    Walker, A.R., Davison, P.A., Bolognesi-Winfield, A.C., James, C.M., Srinivasan, N., Blundell, T.L., Esch, J.J., Marks, M.D., and Gray, J.C. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11, 1337-1350. (1999).
    Xu, Y., Chang, P., Liu, D., Narasimhan, M.L., Raghothama, K.G., Hasegawa, P.M., and Bressan, R.A. Plant Defense Genes Are Synergistically Induced by Ethylene and Methyl Jasmonate. Plant Cell 6, 1077-1085. (1994).
    Yang, H.-W., and Yu, T.-S. Arabidopsis floral regultors FVE and AGL24 are phloem-mobile RNAs. Botanical Studies 51, 17-26. (2010).
    Zeevaart, J.A.D. Physiology of flower formation. Annual Review of Plant Physiology 27, 321-348. (1976).

    下載圖示 校內:2016-08-01公開
    校外:2016-08-01公開
    QR CODE