簡易檢索 / 詳目顯示

研究生: 劉欣宜
Liou, Sin-Yi
論文名稱: 二氧化錳降解Albendazole驅蟲藥之動力學與反應途徑之探討
Oxidative transformation kinetics and pathways of albendazole from reactions with manganese dioxide
指導教授: 陳女菀如
Chen, Wan-Ru
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 71
中文關鍵詞: Albendazole二氧化錳氧化降解水解反應
外文關鍵詞: albendazole, manganese oxide, oxidative transformation, hydrolysis
相關次數: 點閱:76下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Albendazole (ABZ)為一常見的苯並咪唑類驅蟲藥劑,其有較高的Kow 值(辛醇-水分配係數)及Koc值(有機碳-水分配係數),對有機相親和力強,故容易累積於土壤及底泥。由於人們過去長期以來的使用已使得ABZ進入到自然環境當中,然而目前已有許多文獻指出ABZ具有生物毒性,若持續殘留在環境裡將可能影響其它非標的生物與衍生出抗藥性問題。二氧化錳(MnO2)為土壤/底泥常見的天然礦物,具有強氧化能力且能參與多種有機汙染物之氧化降解。根據MnO2及ABZ之特性,可推測MnO2很可能會參與ABZ在環境當中的轉化,本研究旨在瞭解MnO2對於ABZ之氧化降解機制與轉化途徑,此將有助於釐清其在環境中的行為與宿命。

    研究結果顯示,離子強度及金屬離子對於ABZ之降解速率並無明顯影響,而酸性條件卻有利於ABZ之轉化;有機共溶劑之存在則會抑制反應進行,由於ABZ對於有機溶劑之親和力較強,減少其對於MnO2表面之接觸機會使得反應速率變慢,且隨使用的有機溶劑極性愈低,對於ABZ降解的阻礙效果愈強(抑制能力:乙醚 ~ 正丁醇 > 乙醇 > 甲醇 > 乙腈);實驗發現也腐植酸會造成MnO2之還原溶解,故對反應亦具有明顯的抑制效果。由反應動力學模擬結果得知,表面複合物之形成(吸附步驟)在MnO2對ABZ的降解中為控制反應速率的主要因子。

    以高效能液相層析串聯質譜儀(LC-MS/MS)檢測後發現,ABZ結構上的丙硫基(propylthio group)為MnO2主要的氧化位置,形成之氧化降解產物為albendazole sulfoxide (ABZ-SO)。此外,若將ABZ溶解於純水中,ABZ會水解成多種水解產物,而這些水解產物亦會與MnO2反應,形成更多樣的氧化衍生物,這些衍生化合物相較ABZ具有較高的極性,於環境中的流動性較高,然而產物鑑定結果卻顯示水解及氧化反應難以破壞其主體結構,故這些衍生物仍可能具有生物毒性並對環境具有潛在威脅。

    Albendazole (ABZ) is a benzimidazole-based veterinary anthelmintic used extensively in the treatment of intestinal parasites. Due to its high hydrophobicity, ABZ tends to accumulate in soils and sediments in the environment. This study aims to investigate ABZ’s possible degradation by manganese oxides. Minor effects from ionic strength and metal cations on ABZ degradation were observed. By contrast, decrease of pH greatly enhanced the reaction rate. Surface complexation between ABZ and MnO2 was indicated to be the dominant control in the reaction kinetics. The water solubility of ABZ could be enhanced by the existence of co-solvents, which subsequently decreased the affinity of ABZ to MnO2 surface. Suppression by the presence of co-solvents was negatively proportional to the solvent polarities (suppression from high to low: diethyl ether~n-butanol > ethanol > methanol > acetonitrile). Humic acid was found to cause significant inhibition due to the reductive dissolution of MnO2. Four hydrolysis and six oxidative products were identified in this study. Substitutions occurred on both the methyl carbamate and propylthio side chains, yielding the hydrolysis products. The sulfur atom on the propylthio group was confirmed as the major oxidative site. ABZ and its hydrolysis products containing the propylthio side chain underwent the same oxidative transformation to form their corresponding sulfoxide compounds. Dehydrogenative coupling reaction between sulfoxide products and hydrolysis products could occur to generate dimers. All hydrolysis and oxidative products were eluted faster than ABZ in liquid chromatogram, suggesting that these products are more polar compounds and that the spreading out of ABZ will be significantly enhanced if reacting with MnO2 in the environment.

    摘要 I Abstract III 致謝 V Contents VIII Tables X Figures XI Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2-1 Benzimidazoles and ABZ 3 2-2 Occurrence of ABZ in the environment 4 2-3 Transformation of ABZ 7 2-4 Toxicity of ABZ and its metabolites 8 2-5 Manganese dioxide 10 Chapter 3 Materials and Methods 12 3-1 Chemicals 12 3-2 Kinetic experiments 13 3-3 Analytical methods 14 Chapter 4 Results and Discussion 16 4-1 Reaction kinetics of ABZ with MnO2 16 4-2 Effects of pH 21 4-3 Effects of ionic strength and metal cations 23 4-4 Effects of organic solvents and organic matters 25 4-4-1 Organic solvents 25 4-4-2 Organic matters 28 4-5 Product identification 31 4-5-1 ABZ parent compound 35 4-5-2 Hydrolysis products 37 4-5-3 Oxidative products 41 Chapter 5 Conclusion 52 Suggestions 54 References 55 Supporting Information 63

    "Albenza." U.S. Food and Drug Administration, U.S. Department of Health and Human Services (Retrived on January 30th, 2017).
    "Albendazole." Prescribing medicines in pregnancy database, Therapeutic Goods Administration, Department of Health, Australian Government (Retrived on January 30th, 2017).
    Barber, S.A., Soil Nutrient Bioavailability: A Mechanistic Approach, 2 ed., John Wiley & Sons, Inc., New York (1995).
    Bender, M.L. and Homer, R.B., The mechanism of the alkaline hydrolysis of p-nitrophenyl N-methylcarbamate, The Journal of Organic Chemistry, 30(11), 3975-3978 (1965).
    Campbell, W.C., Benzimidazoles: Veterinary uses, Parasitology Today, 6(4), 130-133 (1990).
    Capece, B.P.S., Navarro, M., Arcalis, T., Castells, G., Toribio, L., Perez, F., Carretero, A., Ruberte, J., Arboix, M. and Cristòfol, C., Albendazole sulphoxide enantiomers in pregnant rats embryo concentrations and developmental toxicity, The Veterinary Journal, 165(3), 266-275 (2003).
    Carlsson, G., Patring, J., Ullerås, E. and Oskarsson, A., Developmental toxicity of albendazole and its three main metabolites in zebrafish embryos, Reproductive Toxicology, 32(1), 129-137 (2011).
    Castillo, L., Ruepert, C. and Solis, E., Pesticide residues in the aquatic environment of banana plantation areas in the North Atlantic Zone of Costa Rica (2000).
    Chen, W.-R., Ding, Y., Johnston, C.T., Teppen, B.J., Boyd, S.A. and Li, H., Reaction of Lincosamide Antibiotics with Manganese Oxide in Aqueous Solution, Environmental Science & Technology, 44(12), 4486-4492 (2010).
    Chen, W.-R. and Huang, C.-H., Adsorption and transformation of tetracycline antibiotics with aluminum oxide, Chemosphere, 79(8), 779-785 (2010).
    Chen, W.-R. and Huang, C.-H., Transformation kinetics and pathways of tetracycline antibiotics with manganese oxide, Environmental Pollution, 159(5), 1092-1100 (2011).
    Chiou, C.T., Partition and Adsorption of Organic Contaminants in Environmental Systems. John Wiley & Sons, Inc., New Jersey (2002).
    Cristòfol, C., Navarro, M., Franquelo, C., Valladares, J.E., Carretero, A., Ruberte, J. and Arboix, M., Disposition of netobimin, albendazole, and its metabolites in the pregnant rat: developmental toxicity, Toxicology and Applied Pharmacology, 144(1), 56-61 (1997).
    Daughton, C.G. and Ternes, T.A., Pharmaceuticals and personal care products in the environment: agents of subtle change?, Environmental Health Perspectives, 107(Suppl 6), 907-938 (1999).
    Delatour, P., Parish, R.C. and Gyurik, R.J., Albendazole : A comparison of relay embryotoxicity with embryotoxicity of individual metabolites, Annales de Recherches Vétérinaires, 12(2), 159-167 (1981).
    Escher, B.I., Berger, C., Bramaz, N., Kwon, J.-H., Richter, M., Tsinman, O. and Avdeef, A., Membrane–Water partitioning, membrane permeability, and baseline toxicity of the parasiticides ivermectin, albendazole, and morantel, Environmental Toxicology and Chemistry, 27(4), 909-918 (2008).
    Ganley, B., Chowdhury, G., Bhansali, J., Daniels, J.S. and Gates, K.S., Redox-activated, hypoxia-selective DNA cleavage by quinoxaline 1,4-di-N-oxide, Bioorganic & Medicinal Chemistry, 9(9), 2395-2401 (2001).
    Gao, J., Hedman, C., Liu, C., Guo, T. and Pedersen, J.A., Transformation of sulfamethazine by manganese oxide in aqueous solution, Environmental Science & Technology, 46(5), 2642-2651 (2012).
    Gros, M., Rodríguez-Mozaz, S. and Barceló, D., Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry, Journal of Chromatography A, 1248104-121 (2012).
    Gyurik, R.J., Chow, A.W., Zaber, B., Brunner, E.L., Miller, J.A., Villani, A.J., Petka, L.A. and Parish, R.C., Metabolism of albendazole in cattle, sheep, rats and mice, Drug Metabolism and Disposition, 9(6), 503-508 (1981).
    Hilário, V.C., Carrão, D.B., Barth, T., Borges, K.B., Furtado, N.A.J.C., Pupo, M.T. and de Oliveira, A.R.M., Assessment of the stereoselective fungal biotransformation of albendazole and its analysis by HPLC in polar organic mode, Journal of Pharmaceutical and Biomedical Analysis, 61100-107 (2012).
    Horvat, A.J.M., Babić, S., Pavlović, D.M., Ašperger, D., Pelko, S., Kaštelan-Macan, M., Petrović, M. and Mance, A.D., Analysis, occurrence and fate of anthelmintics and their transformation products in the environment, TrAC Trends in Analytical Chemistry, 3161-84 (2012).
    Huan, Z., Luo, J., Xu, Z. and Xie, D., Acute toxicity and genotoxicity of carbendazim, main Impurities and metabolite to earthworms (Eisenia foetida), Bulletin of Environmental Contamination and Toxicology, 96(1), 62-69 (2016).
    Kang, B.-S., Lee, S.-E., Ng, L.C., Kim, J.-K. and Park, J.-S., Exploring the preparation of albendazole-loaded chitosan-tripolyphosphate nanoparticles, Materials, 8(2), 486-498 (2015).
    Kitzman, D., Cheng, K.-J. and Fleckenstein, L., HPLC assay for albendazole and metabolites in human plasma for clinical pharmacokinetic studies, Journal of Pharmaceutical and Biomedical Analysis, 30(3), 801-813 (2002).
    Klausen, J., Haderlein, S.B. and Schwarzenbach, R.P., Oxidation of substituted anilines by aqueous MnO2:  effect of co-Solutes on initial and quasi-steady-state kinetics, Environmental Science & Technology, 31(9), 2642-2649 (1997).
    Knauer, B.R. and Napier, J.J., The nitrogen hyperfine splitting constant of the nitroxide functional group as a solvent polarity parameter. The relative importance for a solvent polarity parameter of its being a cybotactic probe vs. its being a model process, Journal of the American Chemical Society, 98(15), 4395-4400 (1976).
    Laha, S. and Luthy, R.G., Oxidation of aniline and other primary aromatic amines by manganese dioxide, Environmental Science & Technology, 24(3), 363-373 (1990).
    Lanusse, C.E. and Prichard, R.K., Clinical pharmacokinetics and metabolism of benzimidazole anthelmintics in ruminants, Drug Metabolism Reviews, 25(3), 235-279 (1993).
    Lin, K., Liu, W. and Gan, J., Reaction of tetrabromobisphenol A (TBBPA) with manganese dioxide: Kinetics, products, and pathways, Environmental Science & Technology, 434480-4486 (2009).
    Lin, K., Liu, W. and Gan, J., Oxidative removal of bisphenol A by manganese dioxide: efficacy, products, and pathways, Environmental Science & Technology, 43(10), 3860-3864 (2009).
    Liu, J.-L. and Wong, M.-H., Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China, Environment International, 59208-224 (2013).
    Liu, R., Liu, H., Qiang, Z., Qu, J., Li, G. and Wang, D., Effects of calcium ions on surface characteristics and adsorptive properties of hydrous manganese dioxide, Journal of Colloid and Interface Science, 331(2), 275-280 (2009).
    Lu, Z., Lin, K. and Gan, J., Oxidation of bisphenol F (BPF) by manganese dioxide, Environmental Pollution, 159(10), 2546-2551 (2011).
    Lu, Z. and Gan, J., Oxidation of nonylphenol and octylphenol by manganese dioxide: Kinetics and pathways, Environmental Pollution, 180214-220 (2013).
    Lubega, G.W. and Prichard, R.K., Interaction of benzimidazole anthelmintics with Haemonchus contortus tubulin: Binding affinity and anthelmintic efficacy, Experimental Parasitology, 73(2), 203-213 (1991).
    Millaleo, R., Reyes- Diaz, M., Ivanov, A.G., Mora, M.L. and Alberdi, M., Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms, Journal of Soil Science and Plant Nutrition, 10(4), 470-481 (2010).
    Morgan, J.J. and Stumm, W., Colloid-chemical properties of manganese dioxide, Journal of Colloid Science, 19(4), 347-359 (1964).
    Mottier, M.L., Alvarez, L.I., Pis, M.A. and Lanusse, C.E., Transtegumental diffusion of benzimidazole anthelmintics into Moniezia benedeni: correlation with their octanol–water partition coefficients, Experimental Parasitology, 103(1–2), 1-7 (2003).
    Murray, J.W., The surface chemistry of hydrous manganese dioxide, Journal of Colloid and Interface Science, 46(3), 357-371 (1974).
    Murray, J.W., The interaction of metal ions at the manganese dioxide-solution interface, Geochimica et Cosmochimica Acta, 39(4), 505-519 (1975).
    Page, S.W., Chapter 10 - Antiparasitic drugs, Small Animal Clinical Pharmacology, 2 ed., W.B. Saunders, Edinburgh (2008), p. 198-260.
    Petrović, M., Škrbić, B., Živančev, J., Ferrando-Climent, L. and Barcelo, D., Determination of 81 pharmaceutical drugs by high performance liquid chromatography coupled to mass spectrometry with hybrid triple quadrupole–linear ion trap in different types of water in Serbia, Science of The Total Environment, 468–469415-428 (2014).
    Posselt, H.S., Anderson, F.J. and Weber, W.J., Cation sorption on colloidal hydrous manganese dioxide, Environmental Science & Technology, 2(12), 1087-1093 (1968).
    Pourreza, N., Rastegarzadeh, S. and Larki, A., Determination of fungicide carbendazim in water and soil samples using dispersive liquid-liquid microextraction and microvolume UV–vis spectrophotometry, Talanta, 13424-29 (2015).
    Prasad, G.S., Girisham, S., Reddy, S.M. and Srisailam, K., Biotransformation of albendazole by fungi, World Journal of Microbiology and Biotechnology, 24(8), 1565-1571 (2007).
    Prasad, G.S., Girisham, S. and Reddy, S.M., Studies on microbial transformation of albendazole by soil fungi, Indian Journal of Experimental Biology, 8(4), 425-429 (2009).
    Prasad, G.S., Girisham, S. and Reddy, S.M., Microbial transformation of albendazole., Indian Journal of Experimental Biology, 48(4), 415-420 (2010).
    Ragno, G., Risoli, A., Ioele, G. and De Luca, M., Photo- and thermal-stability studies on benzimidazole anthelmintics by HPLC and GC-MS, Chemical and Pharmaceutical Bulletin, 54(6), 802-806 (2006).
    Rawden, H.C., Kokwaro, G.O., Ward, S.A. and Edwards, G., Relative contribution of cytochromes P-450 and flavin-containing monoxygenases to the metabolism of albendazole by human liver microsomes, British Journal of Clinical Pharmacology, 49(4), 313-322 (2000).
    Sim, W.-J., Kim, H.-Y., Choi, S.-D., Kwon, J.-H. and Oh, J.-E., Evaluation of pharmaceuticals and personal care products with emphasis on anthelmintics in human sanitary waste, sewage, hospital wastewater, livestock wastewater and receiving water, Journal of Hazardous Materials, 248–249219-227 (2013).
    Stone, A.T., Reductive dissolution of manganese(III/IV) oxides by substituted phenols, Environmental Science & Technology, 21(10), 979-988 (1987).
    Sunda, W.G. and Kieber, D.J., Oxidation of humic substances by manganese oxides yields low-molecular-weight organic substrates, Nature, 367(6458), 62-64 (1994).
    Taylor, M.A., Hunt, K.R. and Goodyear, K.L., The effects of stage-specific selection on the development of benzimidazole resistance in Haemonchus contortus in sheep, Veterinary Parasitology, 109(1–2), 29-43 (2002).
    Whittaker, S.G. and Faustman, E.M., Effects of albendazole and albendazole sulfoxide on cultures of differentiating rodent embryonic cells, Toxicology and Applied Pharmacology, 109(1), 73-84 (1991).
    Zhang, H. and Huang, C.-H., Oxidative transformation of triclosan and chlorophene by manganese oxides, Environmental Science & Technology, 37(11), 2421-2430 (2003).
    Zhang, H. and Huang, C.-H., Oxidative transformation of fluoroquinolone antibacterial agents and structurally related amines by manganese oxide, Environmental Science & Technology, 39(12), 4474-4483 (2005).
    Zhang, H., Chen, W.-R. and Huang, C.-H., Kinetic modeling of oxidation of antibacterial agents by manganese oxide, Environmental Science & Technology, 42(15), 5548-5554 (2008).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE