簡易檢索 / 詳目顯示

研究生: 林軒漢
Lin, Xuan-Han
論文名稱: 鈣氧化鋁與金屬矽酸鹽孔洞材料合成與應用
Synthesis and application of calcium alumina and metal silicate porous materials
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 65
中文關鍵詞: 鹼性吸附劑造粒活性氧化鋁酸性氣體吸附管狀金屬矽酸鹽
外文關鍵詞: alkaline adsorbent, granulation, activated alumina, acid gas adsorption, tubular metal phyllosilicate
相關次數: 點閱:52下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主題可分為利用吸附劑與酸性氣體吸收之研究,和管狀金屬頁矽酸鹽生成機構之探討。
    (1) 利用鹼性造粒與酸性氣體吸收之研究
    利用簡單且環境友善的造粒方法,製作鈣氧化鋁造粒吸附酸性氣體(HCl,NO2,CO2…),氯化氫 (HCl) 為無色酸性腐蝕氣體,其排放對於環境與健康有害,而NOx為強溫室氣體,控制溫室氣體排放時的主要對象;而本研究主要以不同時間參數和鍛燒溫度的控制讓造粒過程中所造成吸附上的影響,改善粉狀(Powder)材料實際使用上不僅會使反應腔體內背壓過高、容易沾黏,不易與產物分離,且粉體容易造成粉塵吸收與使用上不便,本實驗方法主要以活性氧化鋁和硝酸鋁水溶液混合,以調整pH值至中性將硝酸鋁轉相成氫氧化鋁附著在氧化鋁表面當作黏著劑(binder),並且水熱至75℃持續6小時提供能量,接著經過加入褐藻酸鈉進行造粒過程,浸入乳酸鈣水溶液裡進行離子交換,烘乾之後改變不同鍛燒溫度,再因高溫鍛燒的環境下產生鍵結,提高造粒的機械強度即可得到研究的標的產物鈣氧化鋁孔洞吸附材料。
    為取得異相成核與水熱法的最佳條件,本研究將反應參數調整成兩個面向,分別為浸泡Ca2+離子交換時間,與鍛燒溫度的影響,可以知道鈣氧化鋁孔洞材料,鍛燒溫度不同而有不同的表面積影響,在700℃的鍛燒下鈣氧化鋁孔洞材料表面積約為125 m2g-1,而在800℃鍛燒下表面積約為95 m2g-1,依不同的乳酸鈣浸泡時間離子交換下,利用FTIR以偵測HCl的初始濃度和破出濃度,可以得知出鈣氧化鋁孔洞材料之HCl氯化氫的處理容量,經過測量可以得知氯化氫的處理容量是有達到效果的,因此本實驗使用此造粒合成材料方法是更為簡便、低耗能且對環境友善。

    (2) 管狀金屬頁矽酸鹽生成之形態
    利用簡便且對環境友善的矽酸鹽剝蝕法,合成管狀金屬頁矽酸鹽材料,過往合成金屬頁矽酸鹽phyllosilicate需要以氨蒸發法,並且在高溫高壓的環境下合成,不僅對環境有害且耗能,本研究利用金屬硝酸水合物並且以鹼性溶液調整至適當pH值,並且在150 ℃的環境下,矽酸鹽與金屬氫氧化物進行重組並產生鍵結,再因兩者之間晶格不匹配,產物會因應力產生捲曲,最終形成本研究所探討管狀構型的phyllosilicate,並且探討其反應生成機構。

    (1) The use of alkaline granulation and the study of acidic gas absorption
    The use of simple and environmentally friendly granulation methods to adsorb acidic gases and this study focuses on the control of different time and calcination temperature to enable the granulation process caused by the adsorption of the past adsorption of acidic gases are mostly CaCO3, CaO, zeolite, activated carbon, silica gel material, etc. , but this method is mainly based on the mixing of activated alumina and aluminium nitrate in aqueous solution using deposition-precipitation method. And the surface area of the calcium aluminate pore material is  125 m2g-1 at 700 °C and  95 m2g-1 at 800 °C. The granulation process is followed by sodium alginate ion exchange in aqueous calcium lactate solution, and then bonding under high calcination temperature conditions to improve the mechanical strength of the granulation to obtain the calcium aluminate pore adsorption material for the study.
    In order to obtain the best conditions for deposition-precipitation and hydrothermal methods, the immersion time of Ca2+ ion exchange and the effect of calcination temperature. Under different ion exchange times for calcium lactate, use of this granulation method is therefore simpler, less energy consuming and less polluting to the environment.
    (2) Formation of silicate from tubular metal phyllosilicate
    In the past, the synthesis of phyllosilicate required ammonia evaporation and was carried out under high temperature and pressure, which was not only harmful to the environment but also energy-consuming. Due to the lattice mismatch between the two meterial, the product will be curled in response to the force, resulting in the formation of phyllosilicate in the tubular configuration investigated in this study and reaction mechanism.

    摘要I 英文摘要III 致謝VI 目錄VIII 圖目錄X 表目錄XII 第一章 緒論1 1-1 孔洞材料的定義1 1-2 鋁氧化物的相變2 1-3 造粒方法簡介 1-4頁矽酸鹽簡介7 1-5 金屬頁矽酸鹽材料之合成法8 1-5-1 常見的金屬頁矽酸鹽材料合成法8 1-5-2 管狀金屬矽酸鹽材料的合成法-矽酸鹽剝蝕法10 第二章 實驗部份及儀器設備介紹11 2-1 實驗藥品11 2-2 鹼性吸附材料合成步驟12 2-3 以廢硝酸鋁溶液造粒合成鹼性材料步驟13 2-4金屬矽酸鹽合成步驟14 2-4儀器鑑定分析15 2-4-1火焰原子吸收光譜儀(Atomic Absorption Spectrophotometer;AA)15 2-4-2傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectroscopy ;FTIR)15 2-4-3 X-射線粉末繞射光譜(Powder X-Ray Diffraction; PXRD)16 2-4-4 熱重分析儀(Thermogravimetry Analysis;TGA)17 2-4-5穿透式電子顯微鏡(Transmission Electron Microscopy; TEM)18 2-4-6掃描式電子顯微鏡(Scanning Electron Microscopy; SEM)18 2-4-7 能量分散光譜儀(Energy Dispersive Spectroscopy;EDS)19 2-4-8氮氣等溫吸附/脫附測量儀(N2 adsorption-desorption isotherm)19 2-4-9 錠劑硬度計-(Tablets hardness-tester)24 第三章 鹼性吸附劑造粒與酸性氣體吸附25 3-1 研究動機25 3-2氧化鋁形成鈣氧化鋁水熱pH值影響28 3-3 探討鈣離子不同浸泡時間影響30 3-4 不同褐藻酸鈉重量百分濃度的影響34 3-5鹼性吸附劑吸附NOx材料探討36 3-6以廢硝酸鋁溶液造粒合成鹼性材料38 3-7鍛燒溫度與暴露空氣造成的影響40 3-8酸性氣體吸附與再生(adsorbent regeneration)42 3-9大量廢液造粒與機械強度比較45 3-10以常見鹼性吸附劑比較與合成優勢47 第四章 管狀鎳頁矽酸鹽生成之研究49 4-1研究動機 49 4-2水熱重組法製備Nickel phyllosilicate 孔洞材料50 4-3 Nickel phyllosilicate 在鹼性環境下比表面積與XRD分析51 4-4在鹼性環境下不同pH值的管狀頁矽酸鹽TEM影像54 4-5改變鎳/矽比例 58 4-6 nickel-silicate酸鹼下反應機構推導59 第五章 總結60 5-1鹼性吸附劑造粒與酸性氣體吸附總結60 5-2管狀鎳頁矽酸鹽生成之研究總結60 參考文獻62

    1. Rouquerol, J.; Avnir, D.; Fairbridge, C. W.; Everett, D. H.; Haynes, J. M.; Pernicone, N.; Ramsay, J. D. F.; Sing, K. S. W.; Unger, K. K., Recommendations for the characterization of porous solids (Technical Report). Pure and Applied Chemistry 1994, 66 (8), 1739-1758.
    2. Pakizeh, M., Study of Hg(II) species removal from aqueous solution using hybrid ZnCl2-MCM-41 adsorbent. 2012.
    3. Kim, H. N.; Lee, S. K., Effect of particle size on phase transitions in metastable alumina nanoparticles: A view from high-resolution solid-state 27Al NMR study. American Mineralogist 2013, 98 (7), 1198-1210.
    4. Bansal, A. K.; Balwani, G.; Sheokand, S., Chapter 12 - Critical Material Attributes in Wet Granulation. In Handbook of Pharmaceutical Wet Granulation, Narang, A. S.; Badawy, S. I. F., Eds. Academic Press: 2019; pp 421-453.
    5. Hecht, H.; Srebnik, S., Structural Characterization of Sodium Alginate and Calcium Alginate. Biomacromolecules 2016, 17 (6), 2160-2167.
    6. Fu, S.; Thacker, A.; Sperger, D. M.; Boni, R. L.; Buckner, I. S.; Velankar, S.; Munson, E. J.; Block, L. H., Relevance of Rheological Properties of Sodium Alginate in Solution to Calcium Alginate Gel Properties. AAPS PharmSciTech 2011, 12 (2), 453-460.
    7. Lin, H.-P.; Mou, C.-Y., Structural and Morphological Control of Cationic Surfactant-Templated Mesoporous Silica. Accounts of Chemical Research 2002, 35 (11), 927-935.
    8. Brinker, C. J.; Scherer, G. W., Sol → gel → glass: I. Gelation and gel structure. Journal of Non-Crystalline Solids 1985, 70 (3), 301-322.
    9. Brigatti, M. F.; Galan, E.; Theng, B. K. G., Chapter 2 Structures and Mineralogy of Clay Minerals. In Developments in Clay Science, Bergaya, F.; Theng, B. K. G.; Lagaly, G., Eds. Elsevier: 2006; Vol. 1, pp 19-86.
    10. McDonald, A.; Scott, B.; Villemure, G., Hydrothermal preparation of nanotubular particles of a 1:1 nickel phyllosilicate. Microporous and Mesoporous Materials 2009, 120, 263-266.
    11. Giannelis, E. P.; Krishnamoorti, R.; Manias, E., Polymer-Silicate Nanocomposites: Model Systems for Confined Polymers and Polymer Brushes. In Polymers in Confined Environments, Granick, S.; Binder, K.; de Gennes, P. G.; Giannelis, E. P.; Grest, G. S.; Hervet, H.; Krishnamoorti, R.; Léger, L.; Manias, E.; Raphaël, E.; Wang, S. Q., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 1999; pp 107-147.
    12. Pompe, C. E.; Slagter, M.; de Jongh, P. E.; de Jong, K. P., Impact of heterogeneities in silica-supported copper catalysts on their stability for methanol synthesis. Journal of Catalysis 2018, 365, 1-9.
    13. Toupance, T.; Kermarec, M.; Louis, C., Metal particle size in silica-supported copper catalysts. Influence of the conditions of preparation and of thermal pretreatments. J. Phys. Chem. B 2000, 104 (5), 965-972.
    14. Li, F.; Wang, L.; Han, X.; Cao, Y.; He, P.; Li, H., Selective hydrogenation of ethylene carbonate to methanol and ethylene glycol over Cu/SiO2 catalysts prepared by ammonia evaporation method. International Journal of Hydrogen Energy 2017, 42 (4), 2144-2156.
    15. Zhu, S.; Gao, X.; Zhu, Y.; Fan, W.; Wang, J.; Li, Y., A highly efficient and robust Cu/SiO2 catalyst prepared by the ammonia evaporation hydrothermal method for glycerol hydrogenolysis to 1,2-propanediol. Catalysis Science & Technology 2015, 5 (2), 1169-1180.
    16. Chen, L.-F.; Guo, P.-J.; Qiao, M.-H.; Yan, S.-R.; Li, H.-X.; Shen, W.; Xu, H.-L.; Fan, K.-N., Cu/SiO2 catalysts prepared by the ammonia-evaporation method: Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol. Journal of Catalysis 2008, 257 (1), 172-180.
    17. Di, W.; Cheng, J. H.; Tian, S. X.; Li, J.; Chen, J. Y.; Sun, Q., Synthesis and characterization of supported copper phyllosilicate catalysts for acetic ester hydrogenation to ethanol. Appl. Catal. A: Gen. 2016, 510, 244-259.
    18. Popa, T.; Zhang, Y.; Jin, E.; Fan, M., An environmentally benign and low-cost approach to synthesis of thermally stable industrial catalyst Cu/SiO2 for the hydrogenation of dimethyl oxalate to ethylene glycol. Appl. Catal. A: Gen. 2015, 505, 52-61.
    19. Li, H.; Ban, L.; Wang, Z.; Meng, P.; Zhang, Y.; Wu, R.; Zhao, Y., Regulation of Cu Species in CuO/SiO(2) and Its Structural Evolution in Ethynylation Reaction. Nanomaterials (Basel) 2019, 9 (6), 842.
    20. Zhang, B.; Hui, S.; Zhang, S.; Ji, Y.; Li, W.; Fang, D., Effect of copper loading on texture, structure and catalytic performance of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol. Journal of Natural Gas Chemistry 2012, 21 (5), 563-570.
    21. Garcia, F. A.; Silva, J. C.; de Macedo, J. L.; Dias, J. A.; Dias, S. C.; Geraldo Filho, N., Synthesis and characterization of CuO/Nb2O5/MCM-41 for the catalytic oxidation of diesel soot. Microporous and mesoporous materials 2008, 113 (1-3), 562-574.
    22. Ding, J.; Zhang, J.; Zhang, C.; Liu, K.; Xiao, H.; Kong, F.; Chen, J., Hydrogenation of diethyl oxalate over Cu/SiO2 catalyst with enhanced activity and stability: Contribution of the spatial restriction by varied pores of support. Appl. Catal. A: Gen. 2015, 508, 68-79.
    23. Abbas, M.; Chen, Z.; Zhang, J.; Chen, J., Highly dispersed, ultra-small and noble metal-free Cu nanodots supported on porous SiO2 and their excellent catalytic hydrogenation of dimethyl oxalate to methyl glycolate. New Journal of Chemistry 2018, 42 (12), 10290-10299.
    24. 吳宇婷, 以金屬氫氧化物模板法製備metal-silicate孔洞性複合材料之合成與應用。. 2014.
    25. 張顓麟, 合成Copper Silicate孔洞材料作為氫化觸媒之研究。. 2019.
    26. 蔡昀志, 以氧化矽剝蝕法與共沉澱法合成 metal-silicate 孔洞材料及應用之研究. 2017.
    27. Bian, Z.; Kawi, S., Preparation, characterization and catalytic application of phyllosilicate: A review. Catalysis Today 2020, 339, 3-23.
    28. 陳佑昇, 管狀銅頁矽酸鹽生成動力學之研究. 2021.
    29. Russell, B. J.; Shelton, J. P.; Walsh, A., An atomic-absorption spectrophotometer and its application to the analysis of solutions. Spectrochimica Acta 1957, 8 (6), 317-328.
    30. Smith, B. C., Fundamentals of Fourier transform infrared spectroscopy. CRC press: 2011.
    31. Pope, C. G., X-Ray Diffraction and the Bragg Equation. Journal of Chemical Education 1997, 74 (1), 129.
    32. Monshi, A.; Foroughi, M. R.; Monshi, M. R., Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J Nano Sci Eng, 2012, 2: 154 2012, 160.
    33. Coats, A. W.; Redfern, J. P., Thermogravimetric analysis. A review. Analyst 1963, 88 (1053), 906-924.
    34. Bardestani, R.; Patience, G. S.; Kaliaguine, S., Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT. The Canadian Journal of Chemical Engineering 2019, 97 (11), 2781-2791.
    35. Muttakin, M.; Mitra, S.; Thu, K.; Ito, K.; Saha, B. B., Theoretical framework to evaluate minimum desorption temperature for IUPAC classified adsorption isotherms. International Journal of Heat and Mass Transfer 2018, 122, 795-805.
    36. Ambroz, F.; Macdonald, T. J.; Martis, V.; Parkin, I. P., Evaluation of the BET Theory for the Characterization of Meso and Microporous MOFs. Small methods 2018, 2 (11), 1800173.
    37. 林錦椿; 陳俊勳, 以 HACCP 管控無塵室酸性氣態分子污染物之研究. 工業安全衛生 2010, (256), 14-43.
    38. 翁興中; 劉妙生; 蘇艾; 劉聖幸, 高科技電子業揮發性有機物污染管制理論與實務. Journal of China Institute of Technology 2004, 30.
    39. Epling, W. S.; Campbell, L. E.; Yezerets, A.; Currier, N. W.; Parks, J. E., Overview of the Fundamental Reactions and Degradation Mechanisms of NOx Storage/Reduction Catalysts. Catalysis Reviews 2004, 46 (2), 163-245.
    40. Hill, S. C.; Douglas Smoot, L., Modeling of nitrogen oxides formation and destruction in combustion systems. Progress in Energy and Combustion Science 2000, 26 (4), 417-458.
    41. Hansen, T. W.; DeLaRiva, A. T.; Challa, S. R.; Datye, A. K., Sintering of Catalytic Nanoparticles: Particle Migration or Ostwald Ripening? Accounts of Chemical Research 2013, 46 (8), 1720-1730.
    42. Basuki, K.; Hasnowo, L. A.; Jamayanti, E., Adsorption of uranium simulation waste using bentonite:Titanium dioxide. Urania Jurnal Ilmiah Daur Bahan Bakar Nuklir 2019, 25.
    43. Omorogie, D. M.; Babalola, J.; Francis, T.; Unuabonah, E.; Babalola, J., Regeneration strategies for spent solid matrices used in adsorption of organic pollutants from surface water: a critical review. Desalination and water treatment 2014.
    44. 黃高英, 利用鹼性吸附劑移除半導體製程中之酸排氣. 2009.
    45. 陳運穎, 金屬矽酸鹽孔洞材料之合成與應用. 2014.

    下載圖示 校內:2025-08-03公開
    校外:2025-08-03公開
    QR CODE