簡易檢索 / 詳目顯示

研究生: 凃詠俊
Tu, Yung-Chun
論文名稱: 側向單/多級串接氧化鋅奈米線與其異質結構於紫外光檢測器之研製
Fabrication of UV detectors based on laterally-oriented ZnO nanowires and n-ZnO/p-SnO (or p-CuO) nano heterojunctions
指導教授: 王水進
Wang, Shui-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 69
中文關鍵詞: 氧化鋅奈米線水熱法異質結構斜角紫外光檢測器
外文關鍵詞: ZnO-NWs, HTG, heterojunction structure, tilted, UV sensors
相關次數: 點閱:76下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之研究主題係藉由水熱法(hydro-thermal growth, HTG)進行一維氧化鋅奈米線(ZnO nanowires, ZnO-NWs)之選擇性成長,並於奈米線上進行薄膜沉積進而製備出異質接面結構之UV光感測器。本論文主要研究工作概分為下列三個部份:
    於第一部分中,我們利用黃光微影技術定義出多級串接元件的區域,並於其成長側向氧化鋅奈米線後再浸泡於稀釋的鹽酸溶液中30秒進行表面粗化工程,利用奈米線與奈米線相互疊接進行多級串接。我們比較單級串接至八級串接條件下不同的光電分析,實驗結果發現五級串接元件具有最好的UV光感測響應。此元件於UV光波長365 nm照射下有2.4倍的響應,所需的響應時間與回復時間分別是約10秒與32秒。
    於第二部分中,我們將已成長垂直的氧化鋅奈米線置於傾斜75度角的載具,進行不同厚度(50、200、500與1000 nm) p-type SnO薄膜沉積,製備出異質接面結構的UV光感測器進行外觀型態及光電分析。實驗中所使用的傾斜角載具,可預防進行製作電極時p-SnO/基板形成短路的現象,進而完成我們所需要的異質結構的UV光感測器。實驗結果發現,四個不同p-type SnO厚度的異質結構UV光感測器展現出良好整流比與不同的光電特性。其中以沉積500 nm厚度的異質結構UV光感測器有最好的響應,此元件於UV光波長254 nm照射下有8.5倍的響應,所需的響應時間與回復時間分別是5秒20秒,其臨界電壓9V及漏電流強度3.8 A/cm2 ( Jr @ -5 V)。
    於第三部分中,我們係以與第二部分相同之步驟進行垂直式氧化鋅奈米線之成長,之後利用旋轉塗佈技術將Polymethylmethacrylate (PMMA)填充於奈米線與奈米線間的間隙,並利用Inductively Coupled Plasma (ICP)進行PMMA蝕刻,使部分氧化鋅奈米線尖端未受PMMA包覆,進行不同厚度(300、600、900、1200與1500 nm)的p-type CuO薄膜沉積,製備出異質結構的UV光感測器進行外觀型態及光電分析。實驗中所使用的PMMA是絕緣且透光佳的材料,可預防進行製作電極時,上下電極形成短路的現象且其對UV光穿透至空乏區無顯著影響,進而完成我們所需要的異質結構UV光感測器;而五個不同p-type CuO厚度的異質結構UV光感測器亦展現出良好的整流比與不同的光電特性。其中以沉積1200 nm厚度的異質結構UV光感測器有最好的響應,此元件於UV光波長254及365 nm照射下分別有7.4倍與11.6倍的響應,在UV光波長365 nm下所需的響應時間與回復時間分別是3.5及3.5秒,其臨界電壓1.8 V及逆偏漏電流強度0.19 A/cm2 ( Jr @ -5 V).。
    本研究以HTG製備出具有良好的高寬比之成長ZnO NWs,且研發出粗化工程及斜角沉積技術及填充透光率佳的絕緣材料技術,完成多級串接及異質結構的UV光偵測器元件,且其皆有很大的響應,響應時間與回復時間亦相當快速,預期在未來UV光偵測器元件應用上極具潛力與競爭力。

    In this thesis, the growth and optoelectronic properties of ZnO nanowires-based nanoheterojunction and lateral structures are studied. The preparation of the ZnO nanowires (ZnO-NWs) using hydro-thermal growth (HTG) method and theirs applications in UV sensors are also investigated.
    There are three parts comprised in this thesis. The first part focus on the design and fabrication of a series connection of lateral ZnO-NWs for nano optoelectronic sensors. The samples were placed in a solution of 0.04 M zinc nitrate hexahydrate and 0.04 M Hexamethylenetetramine at 90oC for 3 hours for the laterally growth ZnO-NWs between two neighboring electrodes. The device was further dipped into a dilute HCl solution (0.36%) for 30s to roughen the surface of ZnO-NWs. The photo induced currents of the lateral ZnO-NWs with or without series connections under UV light (254 and 365 nm, 6 mW/cm2) illuminations are presented and discussed. The UV sensor with five series connections shows a sensitivity (IUV/Idark) as high as 2.4 and a response time as low as 10~32 s.
    The second part focuses on the use of a ZnO-NW-based nano heterojunction (NH) structure for optoelectronic sensors applications. Nano heterojunction arrays (NHAs) were formed via tilted sputtering deposition of p-type SnO onto the vertical-aligned ZnO-NWs grown by hydrothermal growth (HTG) method. The optoelectronic properties of the SnO/ZnO-NWs NHAs with SnO thicknesses (50, 200, 500, and 1000 nm) are analyzed. The fabricated p-SnO/n-ZnO-NWs NHAs with various SnO thicknesses all exhibit a well-defined rectifying behavior in darkness. Note that the sample with 500-nm-thick SnO film exhibits the highest forward current among all. It shows a diode-like behavior with a forward threshold voltage (Vth) of ~9 V, and a leakage current density (Jr @ -5 V) of 3.8 A/cm2). It indicates that the photo-induced current increases linearly with increasing the UV light power intensity. A distinctly increase in the photo-induced diode current of about 8.5 times under 6 mW/cm2 UV illumination was obtained.
    In the third part of this thesis, the same HTG process for the synthesis of vertically aligned ZnO NWs was conducted. The samples were placed in a solution of 0.04 M zinc nitrate hexahydrate and Hexamethylenetetramine at 90°C for 1 hour. After HTG growth, the interspaces between ZnO-NWs were filled with PMMA by spin-coating. It was followed by an ICP dry etching to unveil the top portion of the ZnO-NW arrays. Then the different p-CuO thickness (300, 600, 900, 1200, and 1500 nm) was sputtered onto the vertical ZnO-NWs and the p-CuO/n-ZnO-NWs with PMMA padding NHJs are formed and the optoelectronic properties are studied. The use of PMMA which has superior transmittance UV light could avoid the collapse of vertically-aligned ZnO-NWs and effectively insulate the direct contact between top and bottom electrodes. All devices exhibit a well-defined rectifying behavior in darkness. Note that the sample with 1200-nm-thick CuO film exhibits the highest forward current among all. It shows a diode-like behavior with a forward threshold voltage (Vth) of ~1.8 V, and a lower leakage current density (Jr @ -5 V) of 0.19 A/cm2. Distinct increase in the photo-induced diode current of about 11.6 times and 7.4 times under UV light wavelength of 365 and 254 nm (identical power density of 6mW/cm2) UV illumination were obtained, respectively. The fast photoresponse times (rise time ~3.5 s and fall time ~3.5 s) indicate that the p-CuO/n-ZnO-NW NHJ arrays have good optoelectronic properties. In addition, the reversible cycles of the photoresponse curve suggests a stable and repeatable operation of photo detecting and optical sensing.
    It is expected that HTG of ZnO-NWs which are with the merits of high aspect-ratio could be a potential material for the applications in UV sensors. Furthermore, the functional ZnO-NWs-based nanoheterojunction structures would offer a simple and low-cost building block for high-performance optoelectronics in the near future.

    中文摘要 i 英文摘要 iv 誌 謝 vii 表 目 錄 xi 圖 目 錄 xii 第一章 緒論 1 1-1紫外光發展與應用 1 1-2半導體發展 1 1-3研究動機 3 第二章 簡介 5 2-1氧化鋅材料簡介 5 2-2氧化鋅材料之UV響應特性 7 2-3以水熱法成長氧化鋅奈米線 9 2-4水熱法成長(hydro-thermal growth, HTG)氧化鋅奈米線之演進與製程方法 10 第三章 實驗流程、分析方法與設備 16 3-1前言 16 3-2 實驗材料及設備 17 3-2-1 實驗材料 17 3-2-2 實驗設備 19 3-3 元件製作流程 31 第四章 側向單/多級串接ZnO-NWs紫外光檢測元件之研製 35 4-1側向單/多級串接ZnO-NWs紫外光檢測元件之製備 35 4-2製備元件之外觀型態與材料晶型結構分析 38 4-2-1 元件之外觀型態(SEM分析) 38 4-2-2元件之材料晶型結構分析(XRD、TEM及SAED) 39 4-3 紫外光檢測器的電特性量測與分析 41 4-3-1探討有無表面粗化工程之影響 41 4-3-2側向單/多級串接ZnO-NWs之紫外光檢測器響應特性 42 4-3-3實驗結果與討論 45 第五章 n-ZnO nanowires/p-SnO之奈米異質結構之研製 46 5-1 研究動機 46 5-2 元件結構之設計與製程步驟 47 5-3 n-ZnO nanowires/p-SnO之奈米異質接面材料分析 49 5-4 n-ZnO nanowires/p-SnO之奈米異質接面結構之電性分析 52 5-5 實驗結果與探討 54 第六章 n-ZnO nanowires/p-CuO之奈米異質結構之研製 56 6-1 研究動機 56 6-2 元件結構之設計與製程步驟 56 6-3 n-ZnO nanowires/p-CuO之奈米異質接面材料分析 58 6-4 n-ZnO nanowires/p-CuO之奈米異質接面結構之電性分析 59 6-5 實驗結果與探討 60 第七章 結論與研究建議 63 7-1 結論 63 7-2 未來研究之建議 64 參考文獻 66 表 目 錄 表5-1氧化鋅和氧化錫之表面濃度、移動率和電阻率 50 圖 目 錄 圖2-1 氧化鋅晶體結構 6 圖2-2 氧化鋅UV響應示意圖 8 圖2-3為L. Vayssieres團隊在矽基板上成長氧化鋅奈米線陣列 12 圖2-4 P.Yang團隊所製備出的氧化鋅奈米陣列 13 圖2-5 在有AZO的基板上所製備出的氧化鋅奈米柱(a)矽基板與(b) PET基板 14 圖2-6 氧化鋅奈米住成長過程(a)首先成長出個別的氧化鋅晶體、(b)晶體跟晶體間開始因接觸而產生熔合成長與(c)最後形成單晶的氧化鋅奈米柱 14 圖2-7 熔合前後的氧化鋅晶體 14 圖3-1實驗流程圖 16 圖3-2水熱法成長氧化鋅奈米線的設備示意圖 19 圖3-3射頻磁控濺鍍系統示意圖 21 圖3-4真空蒸鍍系統示意圖 22 圖3-5高解析熱電子型場發射掃描式電子顯微鏡 23 圖3-6電子顯微鏡主體結構示意圖 23 圖3-7高解析場發射掃描穿透式電子顯微鏡 25 圖3-8 UV量測用腔體 26 圖3-9曝光機外觀圖 27 圖3-10微影製程流程圖 27 圖3-11 X-Ray光譜儀(XRD) 28 圖3-12光激發螢光光譜儀量測示意圖(Photoluminescence, PL) 29 圖3-13 n-ZnO-NWs多級串接結構之製作流程圖 32 圖3-14 n-ZnO/p-SnO之奈米異質結構之製作流程圖 33 圖3-15 n-ZnO/p-CuO之奈米異質結構之製作流程圖 34 圖4-1具氧化鋅奈米線之側向多級串接紫外光元件之製備流程 37 圖4-2沉積120 nm膜厚AZO晶種層的二種不同元件結構成長所得ZnO-NWs之SEM影像圖。 (a)、(c)具表面粗化與(b)、(d)未表面粗化 38 圖4-3氧化鋅奈米線之XRD分析圖 39 圖4-4氧化鋅奈米線之TEM圖及其SAED圖。(a)低倍率TEM圖 (b)SAED圖與(c)高倍率TEM圖 40 圖4-5 Device A及 device B照射紫外光(254 nm與366 nm)I-T圖 41 圖4-6 120 nm AZO厚度及水熱法製程以成長側向ZnO-NWs多級串接之響應圖 43 圖4-7具側向ZnO-NWs之5級串接量測之I-T響應圖 44 圖5-1 n-ZnO-NWs/p-SnO之奈米異質接面結構製作流程圖 49 圖5-2於氧化鋅奈米線上沈積不同厚度之氧化錫;(a) 50、(b) 200、(c) 500與(d) 1000 nm 50 圖5-3單根n-ZnO nanowire/p-SnO之奈米異質接面結構上之氧化錫(SnO)和氧化鋅(ZnO)的高倍率TEM圖和SAED圖 51 圖5-4 n-ZnO nanowires/p-SnO之奈米異質接面結構之電流密度-電壓曲線圖;(a)沒有照紫外光下所量測曲線與(b)照紫外光下所量測曲線 52 圖5-5 n-ZnO nanowires/p-SnO之奈米異質接面結構於偏壓-5 V時,之電流密度-時間曲線圖 53 圖6-1 n-ZnO-NWs/p-CuO之奈米異質接面結構示意圖 57 圖6-2 n-ZnO-NWs/p-CuO之奈米異質接面結構製作流程圖 57 圖6-3 (a)氧化鋅奈米線(b)PMMA塗佈完ICP蝕刻(c)CuO薄膜沉積(d)EDX分析(c)的成份 58 圖6-4 n-ZnO nanowires/p-CuO之奈米異質接面結構之電流密度-電壓曲線圖 59 圖6-5 n-ZnO nanowires/p-CuO之奈米異質接面結構於偏壓-5 V時,之電流密度-時間曲線圖 60

    [1] Y. Zhang, D. Lan, Y. Wang, and F. Wang, Chem. China, Vol. 3, p. 229, 2008
    [2] J. Chen, W. Lei, W. Chai, Z. Zhang, C. Li, and X. Zhang, “High field emission enhancement of ZnO-nanorods via hydrothermal synthesis,” Solid-State Electron., Vol. 52, p. 294, 2008
    [3] C. Y. Lee, T. Y. Tseng, S. Y. Li, and P. Lin, “Electrical characterizations of a controllable field emission triode based on low temperature synthesized ZnO nanowires,” Nanotechnology, Vol. 17, p. 83, 2006
    [4] M. Oshikiri, Y. Imanaka, F. Aryasetiawan, G. Kido, “Comparison of the electron elective mass of the n-type ZnO in the wurtzite structure measured by cyclotron resonance and calculated from first principle theory,” Physica, B 298 , pp.472- 476, 2001
    [5] K. J. Kima, and Y. R. Park, “Large and abrupt optical band gap variation in In-doped ZnO,” Appl. Phys. Lett., Vol. 78, no. 4, p. 475, 2000
    [6] Y. Y. Xi, Y. F. Hsu, A. B. Djurisic, A. M. C. Ng, W. K. Chen, H. L. Tam, and K. W. Cheah, “NiO/ZnO light emitting diodes by solution-based growth,”,Appl. Phys. Lett., Vol. 92, 113505, 2008
    [7] Z. K. Tang, G. K. L. Wong, and P. Yu, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcristallite films,” Appl. Phys. Lett., Vol. 72, no. 25, 1998
    [8] Hiromichi Ohta, Masahiro Orita, and Masahiro Hirano, “Fabrication and characterization of ultraviolet-emitting diodes composed of transparent p-n heterojunction, p-SrCu2O2 and n-ZnO,” Journal of Applied Physics, Vol. 89, No. 10, 2001
    [9] R. S. Wagner, and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett., Vol. 5, no. 5, p. 89, 1964
    [10] Y. Wu, and P. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Chem. Soc., Vol. 123, p. 3165, 2001
    [11] Q. H. Li, Y. X. Liang, Q. Wan, and T. H. Wang, “Oxygen sensing characteristics of individual ZnO nanowire transistors,” Appl. Phys. Lett., Vol. 85, no. 26, 2004
    [12] J. W. Lee, K. J. Moon, M. H. Ham, J. M. Myoung, “Dielectrophoretic assembly of GaN nanowires for UV sensor applications,” Solid State Communications, Vol. 148, pp. 194-198, 2008
    [13] H. W. Y. Sun, D. L. R. Zhang, C. Zhang, and W. Pan, “GaN Nanofibers based on Electrospinning: Facile Synthesis, Controlled Assembly, Precise Doping, and Application as High Performance UV Photodetector,” Advance Materials, Vol. 21, Issue 2, pp. 227-231, 2009
    [14] A. Shavel, N. Gaponik, A. Eychmu1ller, “Efficient UV-Blue Photoluminescing Thiol-Stabilized Water-Soluble Alloyed ZnSe(S) Nanocrystals,” J. Phys. Chem. B108, pp. 5905-5908, 2004
    [15] C. H. Hsiao, S. J. Chang, S. B. Wang, S. P. Chang, T. C. Li, W. J. Lin, C. H. Ko, T. M. Kuan, and B. R. Huangd, “ ZnSe Nanowire Photodetector Prepared on Oxidized Silicon Substrate by Molecular-Beam Epitaxy,” Journal of The Electrochemical Society, Vol. 156, Issue 4, pp. 73-76, 2009
    [16] H. Fujiwara, H. Hosokawa, K. Murakoshi, Y. Wada, S. Yanagida, “ Surface Characteristics of ZnS Nanocrystallites Relating to Their Photocatalysis for CO2 Reduction,” Langmuir, Vol. 14, pp. 5154-5159, 1998
    [17] X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, D. Golberg, “ Single-Crystalline ZnS Nanobelts as Ultraviolet-Light Sensors,” Advance Materials, Vol. 21, Issue 20, pp. 2034-2039, 2009
    [18] T. H. Moon, M. C. Jeong, W. Lee, J. M. Myoung, “ The fabrication and characterization of ZnO UV detector,” Applied Surface Science, Vol. 240, pp. 280–285, 2005
    [19] Q. A. Xu, J. W. Zhang, K. R. Juc, X. D. Yang, X. Hou, “ ZnO thin film photoconductive ultraviolet detector with fast photoresponse,” Journal of Crystal Growth, Vol. 289, pp. 44–47, 2006
    [20] E. Pace , R. D. Benedetto, S. Scuderi , “ Fast stable visible-blind and highly sensitive CVD diamond UV photodetectors for laboratory and space applications,” Diamond and Related Materials, Vol. 9, pp. 987–993, 2000
    [21] G.Y. Chai , L. Chowa, O. Lupan , E. Rusu , G.I. Stratan , H. Heinrich , V.V. Ursaki I.M. Tiginyanu, “ Fabrication and characterization of an individual ZnO microwire-based UV photodetector,” solid state sciences, Vol. 13, pp. 1205-1210, 2011
    [22] C.L. Hsu , S.J. Chang , Y.R. Lin , P.C. Li , T.S. Lin , S.Y. Tsai, T.H. Lu , I.C. Chen, “ Ultraviolet photodetectors with low temperature synthesized vertical,” Chemical Physics Letters , Vol. 416, pp. 75–78, 2005
    [23] P. Yang, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H.J. Choi, “Controlled Growth of ZnO Nanowires and Their Optical Properties,” Adv. Fund. Mater., Vol. 12, No. 5, 2002
    [24] L. Vayssieres, “growth of arrayed nanorods and nanowires of ZnO form aqueous solution,” Adv. Mater., Vol. 15, no. 5, p. 464, 2003
    [25] Y. Y. Xi, Y. F. Hsu, A.B. Djurisic, A. M. C. Ng, W. K. Chan, H. L. Tam, and K. W. Cheah, “NiO/ZnO light emitting diodes by solution based growth,” Appl. Phsy. Lett., Vol. 92, p. 113505, 2008
    [26] M. K. Lee, C. L. Ho, and C. H. Fan, “Enhancement of light extraction efficiency of gallium nitride flip-chip light-emitting diode with silion oxide hemispherical microlens on its back,” IEEE Photonics technology Letters, Vol. 20, no. 15, p. 1293, 2008
    [27] K. Tsukuma, T. Akiyama , and Imai, “Liquid phase deposition film of tin oxide,” J. Non-Cryst. Solid, Vol. 210, no. 48, p. 48, 1997
    [28] Y.X. Zhang, G.H. Li , Y.X. Jin, Y. Zhang, J. Zhang, L.D. Zhang, “Hydrothermal synthesis and photoluminescence of TiO2 nanowires,” Chemical Physics Letters, Vol. 365, pp. 300–304, 2002
    [29] S. Li, H. Zhang, Y. Ji, D. Yang, “CuO nanodendrites synthesized by a novel hydrothermal route,” Nanotechnology, Vol. 15, pp. 1428–1432, 2004
    [30] L. Spanhel, M. A. Anderson, “Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids,” J. Am. Chem. Soc., Vol. 113(8), p. 2826, 1991
    [31] L. Vayssieres, K. Keis, S. E. Lindquist, A. Hagfeldt, “Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO,” J. Phys. Chem. B., Vol. 105(17), p. 3350, 2001
    [32] L. Vayssieres, N. Beermann, S. E. Lindquist, A. Hagfeldt, “Controlled Aqueous Chemical Growth of Oriented Three-Dimensional Crystalline Nanorod Arrays: Application to Iron(III) Oxides,” Chemistry of Materials., Vol. 13, no. 2, p. 233, 2001
    [33] Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, “Biomimetic arrays of oriented helical ZnO nanorods and columns,” J. Am. Chem. Soc., Vol. 124(44), p. 12954, 2002
    [34] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angew. Chem., Vol. 115, p. 3139, 2003
    [35] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, R. P. H. Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solution,” Chem. Mater., Vol. 17, p. 1001, 2005
    [36] K. Govender, David S. Boyle, P. B. Kenway, and P. O’Brien, “Understanding the factors that govern deposition and morphology of thin film of ZnO from aqueous solution,” J. Mater. Chem., Vol. 14, p. 2575, 2004
    [37] 曾伯霜, “JSM-6700F HR-FESEM Opearation Manual,” Department of Chemical Engineering National Cheng Kung University
    [38] Kurtis S. Leschkies, Alan G. Jacobs, David J. Norris, and Eray S. Aydil, “Nanowire-quantum-dot solar cells and the influence of nanowire length on the collection efficiency,” Appl. Phys. Lett., Vol. 95, 193103, 2009
    [39] W. Guo, L. Fu, Y. Zhang, K. Zhang, L. Y. Liang, Z. M. Liu, H. T. Cao, andX. Q. Pan, “Microstructure, optical, and electrical properties of p-type SnO thin films,” Appl. Phys. Lett. 96 (2010) ung Kim, Hoon-Sik Jang, Sung-Youp Lee and Hyeong-Rag Lee, “Effects of gas exposure on the field-emission properties of ZnO nanorods”, Nanotechnology , Vol. 15, p. 1433, 2004
    [40] Qi Qi, Tong Zhang, Qingjiang Yu, RuiWang, Yi Zeng, Li Liu, Haibin Yang, “Properties of humidity sensing ZnO nanorods-base sensor fabricated by screen-printing,” Sensors and Actuators B, Vol. 133, p. 638, 2008

    下載圖示 校內:2016-08-03公開
    校外:2016-08-03公開
    QR CODE