簡易檢索 / 詳目顯示

研究生: 黃偉豪
Huang, Wei-Hao
論文名稱: 流體滑移、pH 效應和空間電荷對離子熱電響應在奈米局限空間的影響
Effects of Hydrodynamic Slip, pH Value, and Space Charge on Ionic Thermoelectric Response in Nanoconfinement
指導教授: 楊瑞珍
Yang, Ruey-Jen
共同指導教授: 張志彰
Chang, Chih-Chang
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 146
中文關鍵詞: 熱電奈米流體學賽貝克係數索爾特效應離子電泳遷移率熱滲透流體滑移酸鹼效應空間電荷
外文關鍵詞: Thermoelectricity, Nanofluidics, Seebeck coefficient, Soret effect, Ion electrophoretic mobility, Thermoosmosis, Hydrodynamic slippage, pH effect, Space charge
ORCID: https://orcid.org/0000-0002-8037-7208
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球的初級能源消耗中,約有72%的能量會以廢熱的形式損失,其中低溫廢熱佔整體廢熱的63%。在廢熱回收技術中,熱電材料被視為具有潛力的技術之一。相較於傳統的電子熱電材料,近期的研究指出離子熱電材料具有良好的柔韌性、材料簡單與成本低的特性,並在低溫下有較高的賽貝克係數,在穿戴式裝置與低溫廢熱回收更具應用潛力。在先前的研究中,奈米通道電解液與一般電解液相比有較佳的賽貝克係數。然而,在過往針對奈米通道電解液的熱電響應研究中,並未探討如表面滑移效應、溶液pH值與空間電荷的影響。因此,本論文以數值模擬方法研究了上述三個效應對奈米通道電解液的離子熱電響應的影響。

    首先,本論文針對流體滑移對奈米通道離子熱電響應的影響進行研究。研究結果發現流體滑移可以提高熱滲透流,進而提升短路電流。然而,滑移效應也會增強電滲透流,這使奈米通道的電導率也受到增強,導致滑移效應並未顯著影響開路電壓。當滑移長度在10~50 nm,高2 nm與長2000 nm奈米通道的正規化最大功率密度可達到10 mW K-2 m-2,此相較於傳統的熱離子電容或熱電池高了一個數量級。

    接著,本論文針對pH值對具弱酸性表面官能團奈米通道的離子熱電響應的影響進行研究。結果表示,在半徑為0.4 nm與長為50 nm,pH 9的奈米通道的表面電荷為-32 mC/m2,此時的正規化最大功率密度可達到211 mW K-2 m-2,這比pH 5環境下表面電荷為-0.4 mC/m2的奈米通道大三個數量級。

    最後,本論文針對空間電荷對奈米通道離子熱電響應的影響進行研究。在奈米通道中加入空間電荷後,空間電荷會與表面電荷產生顯著的協同效應,這增強了賽貝克係數和離子熱電電流。此外,我們發現在狹窄的通道中,離子傳輸主要受到表面電荷密度的影響。隨著通道尺寸的增大,表面的效應降低,使得空間電荷與其協同效應的影響變得顯著。在半徑為10 nm長度為5000 nm,加入空間電荷的奈米通道的正規化最大功率密度為10.8 mW K-2 m-2,比只有表面電荷的奈米通道大10倍。

    整體而言,研究結果顯示了表面效應(滑移效應與pH值)與空間效應(空間電荷)對奈米受限電解液的離子熱電響應的影響,這些發現為開發用於低階廢熱回收的高性能離子熱電發電機提供了許多重要的資訊。

    Approximately 72% of the world's primary energy consumption is lost as waste heat, with low-grade waste heat accounting for 63% of the total waste heat. Thermoelectric materials are considered one of the potential technologies for waste heat energy conversion. Compared to conventional electronic thermoelectric materials, recent studies have indicated that ionic thermoelectric materials exhibit good flexibility, abundant materials, low cost, and exhibit higher Seebeck coefficients at low temperature, making them suitable for applications in wearable devices and low-grade waste heat energy conversion. Previous research has shown that nanoconfined electrolytes have better Seebeck coefficients compared to bulk electrolytes. However, studies on the thermoelectric response of nanoconfined electrolytes have not thoroughly discussed the effects of hydrodynamic slippage on surface, the pH value of solution, and space charge density. Consequently, this dissertation explores the effects of these three factors on the ionic thermoelectric response in nanoconfinement via numerical simulations.

    First, this dissertation investigated the effects of hydrodynamic slippage on ionic thermoelectric response in nanochannel. The result shown that hydrodynamic slippage enhances thermoosmotic flow, thereby increasing the short-circuit current. However, hydrodynamic slippage also enhances electroosmotic flow, which in turn increases the conductivity of the nanochannel, resulting in insignificant influence on the open-circuit voltage. By introducing a slip length of 10 nm to 50 nm, a normalized maximum power density of 10 mW K⁻² m⁻² can be achieved in a nanochannel with a length is 2000 nm and a height is 2nm, which is an order of magnitude higher than typical thermionic capacitors and thermocells.

    Next, this dissertation studied the effect of pH value on ionic thermoelectric response in nanochannel with weak acids functional group by considering the effect of charge-regulation with varying pH value of KCl solutions. The results showed that in nanochannel with a radius of 0.4 nm and a length of 50 nm, the surface charge density is -32 mC/m2 at pH 9, the normalized maximum power density can reach 211 mW K-2 m-2, which is three orders of magnitude higher than that of a channel at pH 5 with a surface charge density of -0.4 mC/m2.

    Finally, this dissertation investigated the effect of space charge on the ionic thermoelectric response in nanochannel. Introducing space charge into nanochannel results in a significant synergistic effect with surface charges, enhancing the Seebeck coefficient and ionic thermoelectric current. Furthermore, the result indicated that in narrow channels, ion transport is primarily influenced by surface charge density. As the channel size increases, surface effects diminish, making the influence of space charge density and synergistic effects more significant. In a nanochannel with a radius of 10 nm and a length of 5000 nm, the normalized maximum power density with introduced space charge density is 10.8 mW K-2 m-2, which is 10 times higher than that of the nanochannel absence space charge density.

    Overall, the results demonstrate the impact of surface effects (hydrodynamic slippage and pH value) and space effects (space charge density) on the ionic thermoelectric response of nanoconfined electrolytes. These findings provide valuable insights for developing high-performance ionic thermoelectric generators for low-grade waste heat recovery.

    Abstract I 中文摘要 III Acknowledgements V Contents VI List of Figures X List of Tables XIX Abbreviation XX Nomenclature XXI Chapter 1: Introduction 1 1.1 Low grade waste heat energy: thermoelectricity and nanofluidics technology 1 1.2 Nanofluidics 3 1.2.1 Electrical double layer (EDL) 4 1.2.2 Hydrodynamic slippage 11 1.3 Ionic thermoelectric mechanism 14 1.3.1 Soret effect 14 1.3.2 Temperature-dependent ion electrophoretic mobility (TDIEM) 17 1.3.3 Thermoosmosis 20 1.4 Scope and Organization of the Dissertation 21 Chapter 2: Mathematical Modelling 23 2.1 Governing equation in non-isothermal system 23 2.1.1 Poisson equation 23 2.1.2 Nernst-Planck equation 24 2.1.3 Navier–Stokes equation 25 2.1.4 Energy equation 25 2.1.5 Temperature dependent parameters 25 2.2 Finite element method by COMSOL Multiphysics 27 Chapter 3: Effect of Hydrodynamic Slip on Thermoelectric Response in Negatively-Charged Nanofluidic Channels 28 3.1 Introduction 29 3.2 Mathematical model 32 3.2.1 Governing equations 33 3.2.2 Boundary conditions and parameters 33 3.2.3 Slip enhancement ratio 36 3.3 Results and discussion 37 3.3.1 Validation of numerical simulation 37 3.3.2 Effect of hydrodynamic slip on short-circuit current/Seebeck coefficient 39 3.3.3 Effect of access resistance on short-circuit current in short nanochannels 43 3.3.4 Slip enhancement ratio of short-circuit current/Seebeck coefficient 46 3.3.5 Effect of hydrodynamic slip on thermoelectric performance 49 3.4 Summary 52 Chapter 4: Charge Regulation and Effect of pH Value on Ionic Thermoelectric Energy Conversion in Nanopores 54 4.1 Introduction 55 4.2 Mathematical model 57 4.2.1 Governing equations 57 4.2.2 Boundary conditions and parameters 57 4.3 Results and discussion 59 4.3.1 Verifying numerical simulation 59 4.3.2 Effect of electrolyte concentration on Seebeck coefficient 60 4.3.3 Effect of pH value and pore structure on Seebeck coefficient 61 4.3.4 Effect of pH gradient on Seebeck coefficient 62 4.4 Summary 65 Chapter 5: The Synergistic Effect of Space and Surface Charge on Ionic Thermoelectric Power Generation in Nanotube 66 5.1 Introduction 67 5.2 Mathematical model 69 5.2.1 Governing equations 70 5.2.2 Boundary conditions and parameters 70 5.2.3 Synergistic effect 72 5.3 Results and discussion 72 5.3.1 Mesh dependence 72 5.3.2 Effect of nanotube radius on ionic thermoelectric power generation 73 5.3.3 Synergistic effect on TDIEM 77 5.4 Summary 82 Chapter 6: Conclusions and Future Recommendations 83 6.1 Conclusions 83 6.2 Future recommendations 85 Appendix 87 A.1 Heat of transports and Nernst-Planck equation 87 A.2 Seebeck coefficient in the non-overlapped nanochannel 91 A.3 Mesh refinement in the computations 93 A.4 Comparison of the dimensionless Seebeck coefficients obtained from our study and the study conducted by Dietzel and Hardt’s study 94 A.5 Influence of the hydrodynamic slip on the short-circuit current density in nanochannels with the different channel heights 95 A.6 Influence of the KCl concentration on the access resistance, nanochannel resistance, and total resistance of a nanochannel-reservoir system 96 A.7 Influence of the KCl concentration and the slip length on the resistance ratio 97 A.8 Influence of the reservoir size on the short-circuit current 99 A.9 Influence of the reservoir wall boundaries (CD and EF) with surface charge on the short-circuit current 100 A.10 Evaluation of the slip effect on the performance of ionic thermoelectricity in nanochannels 101 Reference 103 Curriculum Vitae 115

    [1] C. Ononogbo, E. Nwosu, N. Nwakuba, G. Nwaji, O. Nwufo, O. Chukwuezie, M. Chukwu, and E. Anyanwu. Opportunities of waste heat recovery from various sources: Review of technologies and implementation, Heliyon, 9 (2023), E13590.
    [2] C. Forman, I. K. Muritala, R. Pardemann, and B. Meyer. Estimating the global waste heat potential, Renewable and Sustainable Energy Reviews, 57 (2016), 1568-1579.
    [3] P. Shahmohamadi, A. Che-Ani, A. Ramly, K. Maulud, and M. Mohd-Nor. Reducing urban heat island effects: A systematic review to achieve energy consumption balance, International Journal of Physical Sciences, 5 (2010), 626-636.
    [4] A. K. S. Al-Sayyab, A. Mota-Babiloni, and J. Navarro-Esbrí. Renewable and waste heat applications for heating, cooling, and power generation based on advanced configurations, Energy Conversion and Management, 291 (2023), 117253.
    [5] P. Malwe, B. Gawali, J. Shaikh, M. Deshpande, R. Dhalait, S. Kulkarni, V. Shindagi, H. Panchal, and K. K. Sadasivuni. Exergy assessment of an Organic Rankine Cycle for waste heat recovery from a refrigeration system: a review, Chemical Engineering Communications, 210 (2023), 837-865.
    [6] S. Lebedevas and T. Čepaitis. Complex use of the main marine diesel engine high-and low-temperature waste heat in the organic rankine cycle, Journal of Marine Science and Engineering, 12 (2024), 521.
    [7] K. Hamid, U. Sajjad, M. U. Ahrens, S. Ren, P. Ganesan, I. Tolstorebrov, A. Arshad, Z. Said, A. Hafner, and C.-C. Wang. Potential evaluation of integrated high temperature heat pumps: A review of recent advances, Applied Thermal Engineering, 230 (2023), 120720.
    [8] H. A. Kazem, M. T. Chaichan, A. H. Al-Waeli, and K. Sopian. A systematic review of photovoltaic/thermal applications in heat pumps systems, Solar Energy, 269 (2024), 112299.
    [9] H. Yan, M. U. Ahrens, E. Hertwich, T. M. Eikevik, and R. Wang. Heat pumps as a sustainable bridge for global heating and cooling at multi-scale, Energy & Environmental Science, 17 (2024), 2081-2087.
    [10] S. Hur, S. Kim, H.-S. Kim, A. Kumar, C. Kwon, J. Shin, H. Kang, T. H. Sung, J. Ryu, and J. M. Baik. Low-grade waste heat recovery scenarios: Pyroelectric, thermomagnetic, and thermogalvanic thermal energy harvesting, Nano Energy, 114 (2023), 108596.
    [11] S. Yin, C. Zhao, Z. Boping, W. Zhao, C. Zhang, and L. Li. Recent progress on two-dimensional van der Waals thermoelectric materials with plasticity, Journal of Materiomics, (2024), In Press.
    [12] S. Jia, W. Qian, P. Yu, K. Li, M. Li, J. Lan, Y.-H. Lin, and X. Yang. Ionic thermoelectric materials: Innovations and challenges, Materials Today Physics, 42 (2024), 101375.
    [13] D. Zhao, A. Würger, and X. Crispin. Ionic thermoelectric materials and devices, Journal of Energy Chemistry, 61 (2021), 88-103.
    [14] X. Wu, N. Gao, H. Jia, and Y. Wang. Thermoelectric converters based on ionic conductors, Chemistry: An Asian Journal, 16 (2021), 129-141.
    [15] M. N. Hasan, H. Wahid, N. Nayan, and M. S. Mohamed Ali. Inorganic thermoelectric materials: A review, International Journal of Energy Research, 44 (2020), 6170-6222.
    [16] T. Hong, C. Guo, B. Qin, X. Zhang, X. Gao, and L.-D. Zhao. Realizing ultrahigh room-temperature seebeck coefficient and thermoelectric properties in SnTe-based alloys through carrier modulation and band convergence, Acta Materialia, 261 (2023), 119412.
    [17] X. Wang, A. Ismael, B. Alanazi, A. Al-Jobory, J. Wang, and C. J. Lambert. High Seebeck coefficient from isolated oligo-phenyl arrays on single layered graphene via stepwise assembly, Journal of Materials Chemistry C, 11 (2023), 14652-14660.
    [18] D. Song, C. Chi, M. An, Y. Du, W. Ma, K. Wang, and X. Zhang. Ionic Seebeck coefficient and figure of merit in ionic thermoelectric materials, Cell Reports Physical Science, 3 (2022), 101018.
    [19] S. Sun, M. Li, X. L. Shi, and Z. G. Chen. Advances in ionic thermoelectrics: from materials to devices, Advanced Energy Materials, 13 (2023), 2203692.
    [20] L. Bocquet. Nanofluidics coming of age, Nat. Mater., 19 (2020), 254-256.
    [21] D. Lei, Z. Zhang, and L. Jiang. Bioinspired 2D nanofluidic membranes for energy applications, Chemical Society Reviews, 53 (2024), 2300-2325.
    [22] J. Zhong and C. Huang. Influence factors of thermal driven ion transport in nano-channel for thermoelectricity application, International Journal of Heat and Mass Transfer, 152 (2020), 119501.
    [23] Y. Jin, R. Tao, S. Luo, and Z. Li. Size-sensitive thermoelectric properties of electrolyte-based nanofluidic systems, The Journal of Physical Chemistry Letters, 12 (2021), 1144-1149.
    [24] T. Li, X. Zhang, S. D. Lacey, R. Mi, X. Zhao, F. Jiang, J. Song, Z. Liu, G. Chen, and J. Dai. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting, Nat. Mater., 18 (2019), 608-613.
    [25] S. Di Lecce and F. Bresme. Thermal polarization of water influences the thermoelectric response of aqueous solutions, The Journal of Physical Chemistry B, 122 (2018), 1662-1668.
    [26] M. Dietzel and S. Hardt. Thermoelectricity in confined liquid electrolytes, Physical Review Letters, 116 (2016), 225901.
    [27] L. Fu, S. Merabia, and L. Joly. What controls thermo-osmosis? Molecular simulations show the critical role of interfacial hydrodynamics, Physical Review Letters, 119 (2017), 214501.
    [28] L. Wang, M. S. Boutilier, P. R. Kidambi, D. Jang, N. G. Hadjiconstantinou, and R. Karnik. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes, Nature Nanotechnology, 12 (2017), 509.
    [29] N. Kavokine, R. R. Netz, and L. Bocquet. Fluids at the nanoscale: From continuum to subcontinuum transport, Annual Review of Fluid Mechanics, 53 (2021), 377-410.
    [30] Z. S. Siwy. Ion‐current rectification in nanopores and nanotubes with broken symmetry, Advanced Functional Materials, 16 (2006), 735-746.
    [31] L.-J. Cheng and L. J. Guo. Rectified ion transport through concentration gradient in homogeneous silica nanochannels, Nano Letters, 7 (2007), 3165-3171.
    [32] H.-C. Yeh, C.-C. Chang, and R.-J. Yang. Electro-osmotic pumping and ion-concentration polarization based on conical nanopores, Physical Review E, 91 (2015), 062302.
    [33] Z. Zhang, S. Yang, P. Zhang, J. Zhang, G. Chen, and X. Feng. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators, Nat. Commun., 10 (2019), 1-9.
    [34] Y. Xie, L. Fu, T. Niehaus, and L. Joly. Liquid-solid slip on charged walls: The dramatic impact of charge distribution, Physical Review Letters, 125 (2020), 014501.
    [35] K.-T. Chen, Q.-Y. Li, T. Omori, Y. Yamaguchi, T. Ikuta, and K. Takahashi. Slip length measurement in rectangular graphene nanochannels with a 3D flow analysis, Carbon, 189 (2022), 162-172.
    [36] M. Majumder, N. Chopra, R. Andrews, and B. J. Hinds. Enhanced flow in carbon nanotubes, Nature, 438 (2005), 44-44.
    [37] V.-P. Mai, A. R. Fauziah, C.-R. Gu, Z.-J. Yang, K. C.-W. Wu, L.-H. Yeh, and R.-J. Yang. Two-dimensional metal–organic framework nanocomposite membranes with shortened ion pathways for enhanced salinity gradient power harvesting, Chemical Engineering Journal, 484 (2024), 149649.
    [38] H.-C. Yeh, C.-C. Chang, and R.-J. Yang. Reverse electrodialysis in conical-shaped nanopores: salinity gradient-driven power generation, RSC Advances, 4 (2014), 2705-2714.
    [39] J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N. R. Aluru, A. Kis, and A. Radenovic. Single-layer MoS2 nanopores as nanopower generators, Nature, 536 (2016), 197-200.
    [40] H. Li, T.-J. Ko, M. Lee, H.-S. Chung, S. S. Han, K. H. Oh, A. Sadmani, H. Kang, and Y. Jung. Experimental realization of few layer two-dimensional MoS2 membranes of near atomic thickness for high efficiency water desalination, Nano Letters, 19 (2019), 5194-5204.
    [41] S. Xue, C. Ji, M. D. Kowal, J. C. Molas, C.-W. Lin, B. T. McVerry, C. L. Turner, W. H. Mak, M. Anderson, and M. Muni. Nanostructured graphene oxide composite membranes with ultrapermeability and mechanical robustness, Nano Letters, 20 (2020), 2209-2218.
    [42] S. Kim, J. Nham, Y. S. Jeong, C. S. Lee, S. H. Ha, H. B. Park, and Y. J. Lee. Biomimetic selective ion transport through graphene oxide membranes functionalized with ion recognizing peptides, Chemistry of Materials, 27 (2015), 1255-1261.
    [43] R. B. Schoch, J. Han, and P. Renaud. Transport phenomena in nanofluidics, Reviews of Modern Physics, 80 (2008), 839.
    [44] C.-C. Chang, R.-J. Yang, M. Wang, J.-J. Miau, and V. Lebiga. Liquid flow retardation in nanospaces due to electroviscosity: Electrical double layer overlap, hydrodynamic slippage, and ambient atmospheric CO2 dissolution, Physics of Fluids, 24 (2012), 072001.
    [45] D. Stein, M. Kruithof, and C. Dekker. Surface-charge-governed ion transport in nanofluidic channels, Physical Review Letters, 93 (2004), 035901.
    [46] A. T. Celebi, M. Barisik, and A. Beskok. Surface charge-dependent transport of water in graphene nano-channels, Microfluidics and Nanofluidics, 22 (2018), 1-10.
    [47] L.-H. Yeh, S. Xue, S. W. Joo, S. Qian, and J.-P. Hsu. Field effect control of surface charge property and electroosmotic flow in nanofluidics, The Journal of Physical Chemistry C, 116 (2012), 4209-4216.
    [48] Y. Ma, L.-H. Yeh, C.-Y. Lin, L. Mei, and S. Qian. pH-regulated ionic conductance in a nanochannel with overlapped electric double layers, Analytical Chemistry, 87 (2015), 4508-4514.
    [49] J.-P. Hsu, T.-C. Su, P.-H. Peng, S.-C. Hsu, M.-J. Zheng, and L.-H. Yeh. Unraveling the anomalous surface-charge-dependent osmotic power using a single funnel-shaped nanochannel, ACS Nano, 13 (2019), 13374-13381.
    [50] P. M. Reppert and F. D. Morgan. Temperature‐dependent streaming potentials: 1. Theory, Journal of Geophysical Research: Solid Earth, 108 (2003)
    [51] C. Chen, D. Liu, L. He, S. Qin, J. Wang, J. M. Razal, N. A. Kotov, and W. Lei. Bio-inspired nanocomposite membranes for osmotic energy harvesting, Joule, 4 (2020), 247-261.
    [52] C. Chen, D. Liu, G. Yang, J. Wang, L. Wang, and W. Lei. Bioinspired ultrastrong nanocomposite membranes for salinity gradient energy harvesting from organic solutions, Advanced Energy Materials, 10 (2020), 1904098.
    [53] Y. Wu, W. Xin, X.-Y. Kong, J. Chen, Y. Qian, Y. Sun, X. Zhao, W. Chen, L. Jiang, and L. Wen. Enhanced ion transport by graphene oxide/cellulose nanofibers assembled membranes for high-performance osmotic energy harvesting, Materials Horizons, 7 (2020), 2702-2709.
    [54] V.-P. Mai, W.-H. Huang, Y.-L. Chang, and R.-J. Yang. Composite GO@ Silk membrane for capillary-driven energy conversion, Journal of Membrane Science, 671 (2023), 121403.
    [55] Y. Wu, T. Zhou, Y. Wang, Y. Qian, W. Chen, C. Zhu, B. Niu, X.-Y. Kong, Y. Zhao, and X. Lin. The synergistic effect of space and surface charge on nanoconfined ion transport and nanofluidic energy harvesting, Nano Energy, 92 (2022), 106709.
    [56] G. Hummer, J. C. Rasaiah, and J. P. Noworyta. Water conduction through the hydrophobic channel of a carbon nanotube, Nature, 414 (2001), 188-190.
    [57] D. Jing and B. Bhushan. The coupling of surface charge and boundary slip at the solid–liquid interface and their combined effect on fluid drag: A review, Journal of Colloid and Interface Science, 454 (2015), 152-179.
    [58] X. Qin, Q. Yuan, Y. Zhao, S. Xie, and Z. Liu. Measurement of the rate of water translocation through carbon nanotubes, Nano Letters, 11 (2011), 2173-2177.
    [59] K. Falk, F. Sedlmeier, L. Joly, R. R. Netz, and L. Bocquet. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction, Nano Letters, 10 (2010), 4067-4073.
    [60] E. Lauga and H. A. Stone. Effective slip in pressure-driven Stokes flow, Journal of Fluid Mechanics, 489 (2003), 55-77.
    [61] R. Wang, J. Chai, B. Luo, X. Liu, J. Zhang, M. Wu, M. Wei, and Z. Ma. A review on slip boundary conditions at the nanoscale: recent development and applications, Beilstein Journal of Nanotechnology, 12 (2021), 1237-1251.
    [62] D. M. Huang, C. Sendner, D. Horinek, R. R. Netz, and L. Bocquet. Water slippage versus contact angle: A quasiuniversal relationship, Physical review letters, 101 (2008), 226101.
    [63] C. Sendner, D. Horinek, L. Bocquet, and R. R. Netz. Interfacial water at hydrophobic and hydrophilic surfaces: Slip, viscosity, and diffusion, Langmuir, 25 (2009), 10768-10781.
    [64] B. Ramos-Alvarado, S. Kumar, and G. Peterson. Hydrodynamic slip in silicon nanochannels, Physical Review E, 93 (2016), 033117.
    [65] D. Schäffel, K. Koynov, D. Vollmer, H.-J. Butt, and C. Schönecker. Local flow field and slip length of superhydrophobic surfaces, Physical Review Letters, 116 (2016), 134501.
    [66] L. Joly, C. Ybert, E. Trizac, and L. Bocquet. Liquid friction on charged surfaces: From hydrodynamic slippage to electrokinetics, The Journal of Chemical Physics, 125 (2006), 204716.
    [67] M. Rahman and M. Saghir. Thermodiffusion or Soret effect: Historical review, International Journal of Heat and Mass Transfer, 73 (2014), 693-705.
    [68] A. Hernández, J. Arcos, J. Martínez-Trinidad, O. Bautista, S. Sánchez, and F. Méndez. Thermodiffusive effect on the local Debye-length in an electroosmotic flow of a viscoelastic fluid in a slit microchannel, International Journal of Heat and Mass Transfer, 187 (2022), 122522.
    [69] C. W. Carr and K. Sollner. New experiments on thermoosmosis, Journal of The Electrochemical Society, 109 (1962), 616.
    [70] A. P. Bregulla, A. Würger, K. Günther, M. Mertig, and F. Cichos. Thermo-osmotic flow in thin films, Physical Review Letters, 116 (2016), 188303.
    [71] L. Fu, L. Joly, and S. Merabia. Giant thermoelectric response of nanofluidic systems driven by water excess enthalpy, Physical Review Letters, 123 (2019), 138001.
    [72] J. Agar, C. Mou, and J. L. Lin. Single-ion heat of transport in electrolyte solutions: a hydrodynamic theory, The Journal of Physical Chemistry, 93 (1989), 2079-2082.
    [73] T. Ghonge, J. Chakraborty, R. Dey, and S. Chakraborty. Electrohydrodynamics within the electrical double layer in the presence of finite temperature gradients, Physical Review E, 88 (2013), 053020.
    [74] A. Würger. Thermal non-equilibrium transport in colloids, Reports on Progress in Physics, 73 (2010), 126601.
    [75] X. Qian, Z. Ma, Q. Huang, H. Jiang, and R. Yang. Thermodynamics of ionic thermoelectrics for low-grade heat harvesting, ACS Energy Letters, 9 (2024), 679-706.
    [76] C. Ludwig. Difusion awischen ungleich erwärmten Orten gleich zusammengesetzter Lösungen, Sitz Math Naturwiss Classe Kaiserichen Akad Wiss, 20 (1856), 539.
    [77] C. Soret. Sur l'etat d'équilibre que prend au point de vue de sa concentration une dissolution saline primitivement homogène dont deux parties sont portées a des températures difféntes, Arch Sci Phys Nat, 2 (1879), 48.
    [78] E. D. Eastman. Thermodynamics of non-isothermal systems, Journal of the American Chemical Society, 48 (1926), 1482-1493.
    [79] E. D. Eastman. Theory of the Soret effect, Journal of the American Chemical Society, 50 (1928), 283-291.
    [80] S. R. de Groot. L’Effect Soret, Amsterdam, (1945)
    [81] Y. Yang, X. Zhang, Z. Tian, G. Deissmann, D. Bosbach, P. Liang, and M. Wang. Thermodiffusion of ions in nanoconfined aqueous electrolytes, Journal of Colloid and Interface Science, 619 (2022), 331-338.
    [82] W. Feddersen. V. on thermodiffusion of gases, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 46 (1873), 55-62.
    [83] G. Lippmann. Endosmose entre deux liquides de même composition chimique et de températures différentes, Compt. rend, 145 (1907), 104-105.
    [84] M. Aubert, "Thermo-osmose," Verlag nicht ermittelbar, 1912.
    [85] B. Derjaguin and G. Sidorenkov. On thermo-osmosis of liquid in porous glass, CR Acad. Sci. URSS, 32 (1941), 622-626.
    [86] A. Würger. Transport in charged colloids driven by thermoelectricity, Physical Review Letters, 101 (2008), 108302.
    [87] D. Lasne, A. Maali, Y. Amarouchene, L. Cognet, B. Lounis, and H. Kellay. Velocity profiles of water flowing past solid glass surfaces using fluorescent nanoparticles and molecules as velocity probes, Physical Review Letters, 100 (2008), 214502.
    [88] S. Tseng, Y.-M. Li, C.-Y. Lin, and J.-P. Hsu. Salinity gradient power: Influences of temperature and nanopore size, Nanoscale, 8 (2016), 2350-2357.
    [89] G. Xie, P. Li, Z. Zhang, K. Xiao, X. Y. Kong, L. Wen, and L. Jiang. Skin‐inspired low‐grade heat energy harvesting using directed Ionic flow through conical nanochannels, Advanced Energy Materials, 8 (2018), 1800459.
    [90] K. Chen, L. Yao, and B. Su. Bionic thermoelectric response with nanochannels, Journal of the American Chemical Society, 141 (2019), 8608-8615.
    [91] J. A. Wood, A. M. Benneker, and R. G. Lammertink. Temperature effects on the electrohydrodynamic and electrokinetic behaviour of ion-selective nanochannels, Journal of Physics: Condensed Matter, 28 (2016), 114002.
    [92] J.-P. Hsu, S.-T. Yang, C.-Y. Lin, and S. Tseng. Ionic current rectification in a conical nanopore: Influences of electroosmotic flow and type of salt, The Journal of Physical Chemistry C, 121 (2017), 4576-4582.
    [93] W. Zhang, Q. Wang, M. Zeng, and C. Zhao. Thermoelectric effect and temperature-gradient-driven electrokinetic flow of electrolyte solutions in charged nanocapillaries, International Journal of Heat and Mass Transfer, 143 (2019), 118569.
    [94] V.-P. Mai and R.-J. Yang. Active control of salinity-based power generation in nanopores using thermal and pH effects, RSC Advances, 10 (2020), 18624-18631.
    [95] V.-P. Mai and R.-J. Yang. Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect, Applied Energy, 274 (2020), 115294.
    [96] M. Karimzadeh, M. Khatibi, and S. N. Ashrafizadeh. Impacts of the temperature-dependent properties on ion transport behavior in soft nanochannels, International Communications in Heat and Mass Transfer, 129 (2021), 105728.
    [97] W. Zhang, M. Farhan, K. Jiao, F. Qian, P. Guo, Q. Wang, C. C. Yang, and C. Zhao. Simultaneous thermoosmotic and thermoelectric responses in nanoconfined electrolyte solutions: Effects of nanopore structures and membrane properties, Journal of Colloid and Interface Science, 618 (2022), 333-351.
    [98] D. Banerjee, S. K. Mehta, S. Pati, and P. Biswas. Analytical solution to heat transfer for mixed electroosmotic and pressure-driven flow through a microchannel with slip-dependent zeta potential, International Journal of Heat and Mass Transfer, 181 (2021), 121989.
    [99] Y.-C. Yao, A. Taqieddin, M. A. Alibakhshi, M. Wanunu, N. R. Aluru, and A. Noy. Strong electroosmotic coupling dominates ion conductance of 1.5 nm diameter carbon nanotube porins, ACS Nano, 13 (2019), 12851-12859.
    [100] P. Liu, T. Zhou, Y. Teng, L. Fu, Y. Hu, X. Lin, X.-Y. Kong, L. Jiang, and L. Wen. Light-induced heat driving active ion transport based on 2D MXene nanofluids for enhancing osmotic energy conversion, CCS Chemistry, 3 (2021), 1325-1335.
    [101] H. S. Harned, B. B. Owen, and C. King. The physical chemistry of electrolytic solutions, Journal of The Electrochemical Society, 106 (1959), 15C.
    [102] B. B. Owen, R. C. Miller, C. E. Milner, and H. L. Cogan. The dielectric constant of water as a function of temperature and pressure1, 2, Journal of Physical Chemistry, 65 (1961), 2065-2070.
    [103] R. Long, Z. Kuang, Z. Liu, and W. Liu. Ionic thermal up-diffusion in nanofluidic salinity-gradient energy harvesting, National Science Review, 6 (2019), 1266-1273.
    [104] S. S. Rao, The finite element method in engineering. Butterworth-heinemann, (2017),
    [105] G. Dhatt, E. Lefrançois, and G. Touzot, Finite element method. John Wiley & Sons, (2012),
    [106] D. W. Pepper and J. C. Heinrich, The finite element method: basic concepts and applications with MATLAB, MAPLE, and COMSOL. CRC press, (2017),
    [107] M. Dietzel and S. Hardt. Flow and streaming potential of an electrolyte in a channel with an axial temperature gradient, Journal of Fluid Mechanics, 813 (2017), 1060-1111.
    [108] R. Long, Z. Luo, Z. Kuang, Z. Liu, and W. Liu. Effects of heat transfer and the membrane thermal conductivity on the thermally nanofluidic salinity gradient energy conversion, Nano Energy, 67 (2020), 104284.
    [109] R. Long, F. Wu, X. Chen, Z. Liu, and W. Liu. Temperature-depended ion concentration polarization in electrokinetic energy conversion, International Journal of Heat and Mass Transfer, 168 (2021), 120842.
    [110] C. Li, Z. Liu, X. Liu, Z. Feng, and X. Mo. Combined effect of surface charge and boundary slip on pressure-driven flow and convective heat transfer in nanochannels with overlapping electric double layer, International Journal of Heat and Mass Transfer, 176 (2021), 121353.
    [111] C. Li, Z. Liu, H. Zhang, N. Qiao, Z. Zhang, J. Zhou, and Z. Q. Tian. Surface charge and thermal dependence of energy conversion in nanochannels, International Journal of Heat and Mass Transfer, 135 (2022), 106121.
    [112] C. Li, Z. Liu, Y. Wang, A. Ali, and Z. Q. Tian. Energy harvesting from charged conical nanopore with salinity and temperature gradient, International Journal of Heat and Mass Transfer, 200 (2023), 123509.
    [113] C. Lee, L. Joly, A. Siria, A.-L. Biance, R. Fulcrand, and L. Bocquet. Large apparent electric size of solid-state nanopores due to spatially extended surface conduction, Nano Letters, 12 (2012), 4037-4044.
    [114] C.-C. Chang and R.-J. Yang. A perspective on streaming current in silica nanofluidic channels: Poisson–Boltzmann model versus Poisson–Nernst–Planck model, Journal of Colloid and Interface Science, 339 (2009), 517-520.
    [115] X. Shi and J. He. Thermopower and harvesting heat, Science, 371 (2021), 343-344.
    [116] M. Massetti, F. Jiao, A. J. Ferguson, D. Zhao, K. Wijeratne, A. Würger, J. L. Blackburn, X. Crispin, and S. Fabiano. Unconventional thermoelectric materials for energy harvesting and sensing applications, Chemical Reviews, 121 (2021), 12465-12547.
    [117] T. Laing. Solar power challenges, Nature Sustainability, 5 (2022), 285-286.
    [118] Z. Bu, X. Zhang, Y. Hu, Z. Chen, S. Lin, W. Li, C. Xiao, and Y. Pei. A record thermoelectric efficiency in tellurium-free modules for low-grade waste heat recovery, Nat. Commun., 13 (2022), 237.
    [119] H. Jouhara, N. Khordehgah, S. Almahmoud, B. Delpech, A. Chauhan, and S. A. Tassou. Waste heat recovery technologies and applications, Thermal Science and Engineering Progress, 6 (2018), 268-289.
    [120] I. Rodríguez-Gutiérrez, K. C. Bedin, B. Mouriño, J. B. Souza Junior, and F. L. Souza. Advances in Engineered Metal Oxide Thin Films by Low-Cost, Solution-Based Techniques for Green Hydrogen Production, Nanomaterials, 12 (2022), 1957.
    [121] C.-C. Chang. Asymmetric electrokinetic energy conversion in slip conical nanopores, Nanomaterials, 12 (2022), 1100.
    [122] Y. Y. Sun, V. P. Mai, and R. J. Yang. Effects of electrode placement position and tilt angles of a platform on voltage induced by NaCl electrolyte flowing over graphene wafer, Appl. Energy, 261 (2020), 114435.
    [123] L.-H. Yeh, Z.-Y. Huang, Y.-C. Liu, M.-J. Deng, T.-H. Chou, H.-C. Ou Yang, T. Ahamad, Saad M. Alshehri, and K. C. W. Wu. A nanofluidic osmotic power generator demonstrated in polymer gel electrolytes with substantially enhanced performance, J. Mater. Chem. A, 7 (2019), 26791-26796.
    [124] T. Jiang, H. Pang, J. An, P. Lu, Y. Feng, X. Liang, W. Zhong, and Z. L. Wang. Robust Swing-Structured Triboelectric Nanogenerator for Efficient Blue Energy Harvesting, Adv. Energy Mater., 10 (2020), 2000064.
    [125] L. Zhai, L. Gao, Z. Wang, K. Dai, S. Wu, and X. Mu. An Energy Harvester Coupled with a Triboelectric Mechanism and Electrostatic Mechanism for Biomechanical Energy Harvesting, Nanomaterials, 12 (2022), 933.
    [126] J. Li, Z. Zhang, R. Zhao, B. Zhang, Y. Liang, R. Long, W. Liu, and Z. Liu. Stack Thermo-Osmotic System for Low-Grade Thermal Energy Conversion, ACS Appl. Mater. Interfaces, 13 (2021), 21371-21378.
    [127] K. Chen, L. Yao, F. Yan, S. Liu, R. Yang, and B. Su. Thermo-osmotic energy conversion and storage by nanochannels, J. Mater. Chem. A, 7 (2019), 25258-25261.
    [128] L.-H. Yeh, F. Chen, Y.-T. Chiou, and Y.-S. Su. Anomalous pH-Dependent Nanofluidic Salinity Gradient Power, Small, 13 (2017), 1702691.
    [129] V.-P. Mai, W.-H. Huang, and R.-J. Yang. Enhancing ion transport through nanopores in membranes for salinity gradient power generation, ACS ES&T Engineering, 1 (2021), 1725-1752.
    [130] X. Zuo, C. Zhu, W. Xian, Q.-W. Meng, Q. Guo, X. Zhu, S. Wang, Y. Wang, S. Ma, and Q. Sun. Thermo-Osmotic Energy Conversion Enabled by Covalent-Organic-Framework Membranes with Record Output Power Density, Angew. Chem. Int. Ed., 61 (2022), e202116910.
    [131] T. Li, X. Zhang, S. D. Lacey, R. Mi, X. Zhao, F. Jiang, J. Song, Z. Liu, G. Chen, J. Dai, Y. Yao, S. Das, R. Yang, R. M. Briber, and L. Hu. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting, Nat. Mater., 18 (2019), 608-613.
    [132] Z. Liu, H. Cheng, Q. Le, R. Chen, J. Li, and J. Ouyang. Giant Thermoelectric Properties of Ionogels with Cationic Doping, Adv. Energy Mater., 12 (2022), 2200858.
    [133] W. Q. Chen, M. Sedighi, and A. P. Jivkov. Thermo-osmosis in hydrophilic nanochannels: mechanism and size effect, Nanoscale, 13 (2021), 1696-1716.
    [134] M. Zhang, K. Guan, Y. Ji, G. Liu, W. Jin, and N. Xu. Controllable ion transport by surface-charged graphene oxide membrane, Nat. Commun., 10 (2019), 1253.
    [135] Y.-S. Su, S.-C. Hsu, P.-H. Peng, J.-Y. Yang, M. Gao, and L.-H. Yeh. Unraveling the anomalous channel-length-dependent blue energy conversion using engineered alumina nanochannels, Nano Energy, 84 (2021), 105930.
    [136] B. Konkena and S. Vasudevan. Understanding Aqueous Dispersibility of Graphene Oxide and Reduced Graphene Oxide through pKa Measurements, J. Phys. Chem. Lett., 3 (2012), 867-872.
    [137] E. S. Orth, J. G. L. Ferreira, J. E. S. Fonsaca, S. F. Blaskievicz, S. H. Domingues, A. Dasgupta, M. Terrones, and A. J. G. Zarbin. pKa determination of graphene-like materials: Validating chemical functionalization, J. Colloid Interface Sci., 467 (2016), 239-244.
    [138] P.-C. Tsai, Y.-S. Su, M. Gao, and L.-H. Yeh. Realization of robust mesoscale ionic diodes for ultrahigh osmotic energy generation at mild neutral pH, J. Mater. Chem. A, 9 (2021), 20502-20509.
    [139] A. Siria, P. Poncharal, A.-L. Biance, R. Fulcrand, X. Blase, S. T. Purcell, and L. Bocquet. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube, Nature, 494 (2013), 455-458.
    [140] C.-W. Chang, C.-W. Chu, Y.-S. Su, and L.-H. Yeh. Space charge enhanced ion transport in heterogeneous polyelectrolyte/alumina nanochannel membranes for high-performance osmotic energy conversion, Journal of Materials Chemistry A, 10 (2022), 2867-2875.
    [141] G. Guthrie Jr, J. N. Wilson, and V. Schomaker. Theory of the thermal diffusion of electrolytes in a Clusius column, The Journal of Chemical Physics, 17 (1949), 310-313.
    [142] A. Würger. Is Soret equilibrium a non-equilibrium effect?, Comptes Rendus Mécanique, 341 (2013), 438-448.
    [143] E. Bringuier. Gauge-invariant approach to thermodiffusion in a liquid binary mixture, Physica A: Statistical Mechanics and its Applications, 390 (2011), 1861-1875.

    無法下載圖示 校內:2027-08-31公開
    校外:2027-08-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE