| 研究生: |
李承訓 Li, Cheng-Hsun |
|---|---|
| 論文名稱: |
以射頻濺鍍法製備ZnGa2O4 薄膜及其光電元件應用 Investigation of Zinc gallate Thin Film Fabricated by RF Sputtering System and Their Optoelectronics Applications |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 光檢測器 、光電晶體 、薄膜電晶體 、雙層主動層 |
| 外文關鍵詞: | Zinc gallate, photodetector, phototransistor, thin film transistor, double-stacked channel layer |
| 相關次數: | 點閱:72 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文為利用射頻磁控濺鍍法沉積ZnGa2O4薄膜,探討不同製程條件下薄膜特性,並將其應用於光感測器之感測層及薄膜電晶體之通道層,並討論元件特性及電性分析。
在實驗的第一部分,我們以磁控濺鍍法沉積不同氧氣分壓之ZnGa2O4薄膜,並藉由熱退火製程優化薄膜特性。我們從三大面向去討論薄膜的性質,分別是薄膜結構、光學特性、表面及縱深分析。在薄膜結構分析中,ZnGa2O4薄膜表面緻密,且由XRD量測發現隨著退火溫度上升,結晶相強度顯著增加,半高寬越小,顯示薄膜結晶性更好;在薄膜光學特性中,顯示薄膜在可見光區域有85%以上的穿透率,從EDS結果分析,ZnGa2O4薄膜鎵元素的占比很高,使其成為一種寬能隙的材料,主要吸收極紫外光波段;在薄膜表面分析中,藉由AFM量測發現薄膜表面粗糙度很小,對於元件中電子的傳輸十分有利;在薄膜縱深分析中,藉由X射線光電子能譜(XPS)圖發現,當氧氣分壓比例上升時,薄膜之中的氧空缺會因此減少,顯示載子數目降低。
在實驗的第二部分,將所製備的ZnGa2O4薄膜應用於光檢測器,並改變射頻濺鍍之氧通量、熱退火之溫度作為調變製程的參數,比較其對於元件光電特性的影響。隨著氧流量的提高,元件的光暗電流都顯著下降,因為在濺鍍的過程中薄膜內的氧空缺被製程氧氣填補,造成薄膜載子數目降低,另外,我們也發現氧空缺對於元件開關特性的影響。再來,透過適當的熱退火處理,能提升元件之光電流,並降低暗電流,因此提升光暗電流比,也增強光響應。一般來說,熱退火製程能有效減少薄膜子能隙缺陷,增強晶格鍵結,使原子重新排列。最後,透過製程優化並找到元件製作的最佳參數,發現氧流量比例0%並於真空中進行熱退火200oC的ZnGa2O4光檢測器有最佳的特性,ON/OFF電流比大於108,響應值為0.203 A/W,響應拒斥比為1.23×10^5。
在實驗的第三部分,實現了以二氧化矽(SiO2)作為閘極介電層的ZnGa2O4薄膜電晶體,藉由調變通道層厚度,製備元件最佳參數。首先,我們發現單層通道層的元件最佳厚度約為30奈米,在室溫下得到場效電子遷移率為0.14 cm^2/V∙s,臨界電壓為3.28 V,次臨界擺幅為0.31 V/dec,ON/OFF電流比為6.48×10^5。最後,將薄膜電晶體的應用延伸到光電晶體,施加偏壓-2 V的情況下,響應拒斥比為2.30×10^4。
另外,我們利用不同氧比例的薄膜堆疊技術,獲得高性能ZnGa2O4雙重堆疊通道層結構之薄膜電晶體,此結構有更優異的介面品質並減少通道層塊材缺陷,降低電子表面散射,對元件的特性大幅改善。我們也成功利用能帶圖解釋其物理機制。在室溫下得到場效電子遷移率為534 cm2/V∙s,臨界電壓為1.01 V,次臨界擺幅為0.09 V/dec,ON/OFF電流比為1.37×10^8。
In this thesis, Zinc gallate (ZnGa2O4) is grown by RF sputtering system and the film properties are investigated under different processing ambiences. Next, the ZnGa2O4 thin films will be used as active layer for optoelectronics devices such as UV photodetectors (PDs) and thin film transistors (TFTs). Finally, the electrical analyses and properties of the devices are discussed in detail.
First, we deposited ZnGa2O4 films with different oxygen partial pressures and optimized the film properties by thermal annealing process. Besides, ZnGa2O4 films are studied from the three aspects such as structural, optical, surface/depth analysis. In the structural analysis, the X-ray diffraction (XRD) reveals that as the annealing temperature increases, the crystalline phase strength increases remarkably and the full width at half maximum (FWHM) becomes narrowly, indicating that the film has better crystallinity. In the optical analysis, the films exhibit a transmittance of more than 85% in the visible light region. Furthermore, according to the EDS results, the ZnGa2O4 film has a high proportion of gallium, making it become a wide-bandgap material. The bandgap is approximately calculated to 5 eV, which absorbs ultraviolet light. In the surface analysis, the surface of the film is very smooth by AFM measurement, leading to lower interfacial trap densities between dielectric layer and channel layer, which is beneficial to the electron transport. In the depth analysis, the X-ray photoelectron spectroscopy (XPS) shows that the oxygen vacancies in the film are reduced as the oxygen flow ratio increased, meaning the number of carriers is decreased.
Second, the prepared ZnGa2O4 film was applied to a photodetector. By simply adjusting the oxygen flow ratio and thermal annealing temperature, we investigate the influence on the optoelectronics properties of the device. With higher oxygen flow ratio, the dark current and photocurrent drop significantly, since the oxygen vacancies in the film are filled up during the sputtering process, resulting in less carrier concentration. In addition, we also found the effect of oxygen vacancies on the switching characteristics. Furthermore, we can not only increase the photocurrent, but also decrease the dark current by annealing process, thus increasing the on/off current ratio and enhancing the photoresponse. In fact, proper annealing temperature can effectively reduce sub-gap defects, enhance lattice bonding, and rearrange atoms. Lastly, the photodetector manufactured under oxygen flow ratio of 0% and annealed at 200oC for 1 hour has the best performance with on/off current ratio greater than 108, responsivity of 0.203 A/W, and UV-to-visible rejection ratio of 1.23 × 105.
Third, ZnGa2O4 TFTs with silicon dioxide as the gate dielectric layer were realized. By controlling the thickness of the active layer, we found that the optimized thickness of the devices is 30 nm. The data extracted from transfer characteristics exhibit field-effect electron mobility of 0.14 cm2/V∙s, threshold voltage of 3.28 V, subthreshold swing of 0.31 V/decade, and on/off current ratio of 6.48×105. Moreover, we broaden the applicability of ZnGa2O4 TFTs to phototransistors, and the UV-to-visible rejection ratio was 9.80 × 103 at the bias voltage of -2 V.
Fourth, we obtained extremely high performance ZnGa2O4 TFTs with a bandgap-engineered double-stacked channel layer structure using different oxygen ratio thin film stacking technology. The homogeneous double-stacked channel layer (DSCL) structure has superior interface quality and fewer bulks traps, reducing surface scattering and improving the characteristics. The mechanism is also successfully explained by the band diagram. The field effect electron mobility was 534 cm2/V∙s, the threshold voltage was 1.01 V, the subthreshold swing was 99 mV/decade, and the on/off current ratio was 1.37×108.
Keyword:ZnGa2O4 (Zinc gallate); photodetector; phototransistor; thin film transistor; double-stacked channel layer
[1] J. F. Wager, “Transparent Electronics,” Science (80-. )., vol. 300, no. 5623, p. 1245 LP-1246, May 2003.
[2] M. Qu, C.-H. Chang, T. Meng, Q. Zhang, P.-T. Liu, and H.-P. D. Shieh, “Stability study of indium tungsten oxide thin-film transistors annealed under various ambient conditions,” Phys. status solidi, vol. 214, no. 2, p. 1600465–n/a, 2017.
[3] Kamiya, T., & Hosono, H. (2010). Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Materials, 2(1), 15.
[4] Wager, J. F., & Hoffman, R. (2011). Thin, fast, and flexible. Ieee Spectrum, 48(5), 42-56.
[5] Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., & Hosono, H. (2004). Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 432(7016), 488.
[6] Fortunato, E., Barquinha, P., & Martins, R. (2012). Oxide semiconductor thin‐film transistors: a review of recent advances. Advanced materials, 24(22), 2945-2986.
[7] R. A. Street, “Thin-film transistors,” Adv. Mater., vol. 21, no. 20,
pp. 2007–2022, May 2009.
[8] Kim, W. S., Lee, Y. H., Cho, Y. J., Kim, B. K., Park, K. T., & Kim, O. (2017). Effect of wavelength and intensity of light on a-InGaZnO TFTs under negative bias illumination stress. ECS Journal of Solid State Science and Technology, 6(1), Q6-Q9.
[9] Fortunato, E. M., Barquinha, P. M., Pimentel, A. C., Gonçalves, A. M., Marques, A. J., Martins, R. F., & Pereira, L. M. (2004). Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature. Applied Physics Letters, 85(13), 2541-2543.
[10] M. H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V,” IEEE Electron Device Lett., vol. 37, no. 2, pp. 212–215, 2016.
[11] Jiao, Z., Ye, G., Chen, F., Li, M., & Liu, J. (2002). The preparation of ZnGa2O4 nano crystals by spray coprecipitation and its gas sensitive characteristics. Sensors, 2(3), 71-78.
[12] Lu, C. H., Hou, T. H., & Pan, T. M. (2016). Low-voltage InGaZnO ion-sensitive thin-film transistors fabricated by low-temperature process. IEEE Transactions on Electron Devices, 63(12), 5060-5063.
[13] Omata, T., Ueda, N., Ueda, K., & Kawazoe, H. (1994). New ultraviolet‐transport electroconductive oxide, ZnGa2O4 spinel. Applied physics letters, 64(9), 1077-1078.
[14] Liu, Y. H., Young, S. J., Ji, L. W., & Chang, S. J. (2015). Ga-doped ZnO nanosheet structure-based ultraviolet photodetector by low-temperature aqueous solution method. IEEE Transactions on Electron Devices, 62(9), 2924-2927.
[15] Kim, J., Sekiya, T., Miyokawa, N., Watanabe, N., Kimoto, K., Ide, K., ... & Hosono, H. (2017). Conversion of an ultra-wide bandgap amorphous oxide insulator to a semiconductor. NPG Asia Materials, 9(3), e359.
[16] Fleischer, M., Höllbauer, L., & Meixner, H. (1994). Effect of the sensor structure on the stability of Ga2O3 sensors for reducing gases. Sensors and Actuators B: Chemical, 18(1-3), 119-124.
[17] Alaie, Z., Nejad, S. M., & Yousefi, M. H. (2015). Recent advances in ultraviolet photodetectors. Materials Science in Semiconductor Processing, 29, 16-55.
[18] Sang, L., Liao, M., & Sumiya, M. (2013). A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures. Sensors, 13(8), 10482-10518.
[19] Wang, W., Pan, X., Dai, W., Zeng, Y., & Ye, Z. (2016). Ultrahigh sensitivity in the amorphous ZnSnO UV photodetector. RSC Advances, 6(39), 32715-32720.
[20] Suresh, A., & Muth, J. F. (2008). Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors. Applied Physics Letters, 92(3), 033502.
[21] Liao, M., Sang, L., Teraji, T., Imura, M., Alvarez, J., & Koide, Y. (2012). Comprehensive investigation of single crystal diamond deep-ultraviolet detectors. Japanese Journal of Applied Physics, 51(9R), 090115.
[22] Xu, C. X., Sun, X. W., & Chen, B. J. (2004). Field emission from gallium-doped zinc oxide nanofiber array. Applied Physics Letters, 84(9), 1540-1542.
[23] Kong, X. Y., & Wang, Z. L. (2003). Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano letters, 3(12), 1625-1631.
[24] Jian, J. K., Wang, C., Zhang, Z. H., Chen, X. L., Xu, L. H., & Wang, T. M. (2006). Necktie-like ZnO nanobelts grown by a self-catalytic VLS process. Materials Letters, 60(29-30), 3809-3812.
[25] Lu, M. Y., Zhou, X., Chiu, C. Y., Crawford, S., & Gradečak, S. (2014). From GaN to ZnGa2O4 through a low-temperature process: Nanotube and heterostructure arrays. ACS applied materials & interfaces, 6(2), 882-887.
[26] Kim, N. H., & Kim, H. W. (2005). Gallium oxide nanomaterials produced on SiO2 substrates via thermal evaporation. Applied surface science, 242(1-2), 29-34.
[27] Oshima, T., Niwa, M., Mukai, A., Nagami, T., Suyama, T., & Ohtomo, A. (2014). Epitaxial growth of wide-band-gap ZnGa2O4 films by mist chemical vapor deposition. Journal of Crystal Growth, 386, 190-193.
[28] Reshmi, R., Krishna, K. M., Manoj, R., & Jayaraj, M. K. (2005). Pulsed laser deposition of ZnGa2O4 phosphor films. Surface and Coatings Technology, 198(1-3), 345-349.
[29] Park, K. W., Yun, Y. H., & Choi, S. C. (2006). ZnGa 2 O 4 thin films fabricated by Sol-gel spinning coating process. Journal of electroceramics, 17(2-4), 263-266.
[30] Nomura, K., Ohta, H., Ueda, K., Kamiya, T., Hirano, M., & Hosono, H. (2003). Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science, 300(5623), 1269-1272.
[31] Fortunato, E. M., Barquinha, P. M., Pimentel, A. C. M. B. G., Gonçalves, A. M., Marques, A. J., Pereira, L. M., & Martins, R. F. (2005). Fully transparent ZnO thin‐film transistor produced at room temperature. Advanced Materials, 17(5), 590-594.
[32] Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., & Hosono, H. (2004). Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 432(7016), 488.
[33] Kwon, J. Y., Son, K. S., Jung, J. S., Kim, T. S., Ryu, M. K., Park, K. B., ... & Lee, S. Y. (2008). Bottom-gate gallium indium zinc oxide thin-film transistor array for high-resolution AMOLED display. IEEE Electron Device Letters, 29(12), 1309-1311.
[34] Kamiya, T., & Hosono, H. (2010). Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Materials, 2(1), 15.
[35] Han, D., Zhang, S., Zhao, F., Dong, J., Cong, Y., Zhang, S., ... & Wang, Y. (2015). Transparent gallium doped zinc oxide thin-film transistors fabricated on glass substrate. Thin Solid Films, 594, 266-269.
[36] Nomura, K., Kamiya, T., Ohta, H., Hirano, M., & Hosono, H. (2008). Defect passivation and homogenization of amorphous oxide thin-film transistor by wet O 2 annealing. Applied Physics Letters, 93(19), 192107.
[37] Kuo, A., Won, T. K., & Kanicki, J. (2008). Advanced multilayer amorphous silicon thin-film transistor structure: Film thickness effect on its electrical performance and contact resistance. Japanese Journal of Applied Physics, 47(5R), 3362.
[38] Kamiya, T., & Hosono, H. (2010). Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Materials, 2(1), 15.
[1] Chang, L. Y. (2017). Investigation of Indium Gallium Oxide Thin Film Fabricated by RF Sputtering System and Their Applications. Master's Thesis of Department of Electrical Engineering, National Cheng Kung University, 98.
[2] Oh, S., Baeck, J. H., Shin, H. S., Bae, J. U., Park, K. S., & Kang, I. B. (2014). Comparison of top-gate and bottom-gate amorphous InGaZnO thin-film transistors with the same SiO 2/a-InGaZnO/SiO 2 stack. IEEE Electron Device Letters, 35(10), 1037-1039.
[3] Jun, S., Jo, C., Bae, H., Choi, H., Kim, D. H., & Kim, D. M. (2013). Unified subthreshold coupling factor technique for surface potential and subgap density-of-states in amorphous thin film transistors. IEEE Electron Device Letters, 34(5), 641-643.
[4] Yun, S. J., Koo, J. B., Lim, J. W., & Kim, S. H. (2007). Pentacene-thin film transistors with ZrO2 gate dielectric layers deposited by plasma-enhanced atomic layer deposition. Electrochemical and solid-state letters, 10(3), H90-H93.
[5] Schroder, D. K. (2006). Semiconductor material and device characterization. John Wiley & Sons.
[6] Brotherton, S. D. (2013). Introduction to Thin Film Transistors: Physics and Technology of TFTs. Springer Science & Business Media.
[7] Van der Ziel, A. (1986). Noise in solid state devices and circuits. Wiley-Interscience.
[8] Reynolds, D. C., Look, D. C., Jogai, B., Litton, C. W., Collins, T. C., Harsch, W., & Cantwell, G. (1998). Neutral-donor–bound-exciton complexes in ZnO crystals. Physical Review B, 57(19), 12151.
[9] Monroy, E., Calle, F., Munoz, E., Omnes, F., Gibart, P., & Munoz, J. A. (1998). Al x Ga 1− x N: Si Schottky barrier photodiodes with fast response and high detectivity. Applied physics letters, 73(15), 2146-2148.
[10] Neamen, D. A. Semiconductor physics and devices: basic principles. 2003.
[11] Waits, R. K., Vossen, J. L., & Kern, W. (1978). Thin film processes. Eds. JL Vossen and W. Kern, Academic, New York.
[12] Chang, C. Y. (Ed.). (1996). Solutions Manual to Accompany Ulsi Technology. McGraw-Hill.
[1] Cha, J. H., Kim, K. H., Park, Y. S., Park, S. J., & Choi, H. W. (2009). Photoluminescence characteristics of nanocrystalline ZnGa2O4 phosphors obtained at different sintering temperatures. Molecular Crystals and Liquid Crystals, 499(1), 85-407.
[2] Han, S., Zhang, Z., Zhang, J., Wang, L., Zheng, J., Zhao, H., ... & Shan, C. (2011). Photoconductive gain in solar-blind ultraviolet photodetector based on Mg0. 52Zn0. 48O thin film. Applied Physics Letters, 99(24), 242105.
[3] Chongsri, K., Bangbai, C., Techitdheera, W., & Pecharapa, W. (2013). Characterization and Photoresponse Propreties of Sn-doped ZnO Thin Films. Energy Procedia, 34, 721-727.
[4] Rakshit, T., Manna, I., & Ray, S. K. (2015). Effect of SnO2 concentration on the tuning of optical and electrical properties of ZnO-SnO2 composite thin films. Journal of Applied Physics, 117(2), 025704.
[5] Inamdar, S. I., & Rajpure, K. Y. (2014). High-performance metal-oxide-metal UV photodetector based on spray deposited ZnO thin film. Journal of Alloys and Compounds, 595, 55-59.
[6] Risbud, A. S., Seshadri, R., Ensling, J., & Felser, C. (2005). Dilute ferromagnetic semiconductors in Fe-substituted spinel ZnGa2O4. Journal of Physics: Condensed Matter, 17(6), 1003.
[7] Sung, N. E., Lee, H. K., Chae, K. H., Singh, J. P., & Lee, I. J. (2017). Correlation of oxygen vacancies to various properties of amorphous zinc tin oxide films. Journal of Applied Physics, 122(8), 085304.
[8] Liu, L. C., Chen, J. S., & Jeng, J. S. (2014). Role of oxygen vacancies on the bias illumination stress stability of solution-processed zinc tin oxide thin film transistors. Applied Physics Letters, 105(2), 023509.
[9] Zheng, B., Hua, W., Yue, Y., & Gao, Z. (2005). Dehydrogenation of propane to propene over different polymorphs of gallium oxide. Journal of Catalysis, 232(1), 143-151.
[10] Wagner, C. D., Riggs, W. M., Davis, L. E., Moulder, J. F., & Muilenberg, G. E. (1979). Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp. Eden Prairie, MN, 38.
[11] Can, M. M., Jaffari, G. H., Aksoy, S., Shah, S. I., & Fırat, T. (2013). Synthesis and characterization of ZnGa2O4 particles prepared by solid state reaction. Journal of Alloys and Compounds, 549, 303-307.
[12] Li, D., Wang, Y., Xu, K., Li, L., & Hu, Z. (2015). Persistently luminescent and photocatalytic properties of ZnGa2O4 phosphors. Materials Research Express, 2(4), 046202.
[1] Wu, P., Zhang, J., Lu, J., Li, X., Wu, C., Sun, R., ... & Ye, Z. (2014). Instability induced by ultraviolet light in ZnO thin-film transistors. IEEE Transactions on Electron Devices, 61(5), 1431-1435.
[2] Yang, L. C., Wang, R. X., Xu, S. J., Xing, Z., Fan, Y. M., Shi, X. S., ... & Zhang, B. S. (2013). Effects of annealing temperature on the characteristics of Ga-doped ZnO film metal-semiconductor-metal ultraviolet photodetectors. Journal of Applied Physics, 113(8), 084501.
[3] Huang, L., Feng, Q., Han, G., Li, F., Li, X., Fang, L., ... & Hao, Y. (2017). Comparison study of β-Ga2O3 photodetectors grown on sapphire at different oxygen pressures. IEEE Photonics Journal, 9(4), 1-8.
[1] Wang, Y., Sun, X. W., Goh, G. K. L., Demir, H. V., & Yu, H. Y. (2010). Influence of channel layer thickness on the electrical performances of inkjet-printed In-Ga-Zn oxide thin-film transistors. IEEE Transactions on Electron Devices, 58(2), 480-485.
[2] Li, J. Y., Chang, S. P., Hsu, M. H., & Chang, S. J. (2017). Photo-Electrical Properties of MgZnO Thin-Film Transistors With High-${k} $ Dielectrics. IEEE Photonics Technology Letters, 30(1), 59-62.
[3] Po Tsun Liu, Dun Bao Ruan, Xiu Yun Yeh, Yu Chuan Chiu, Guang Ting Zheng, and Simon M. Sze, “Highly Responsive Blue Light Sensor with Amorphous Indium-Zinc-Oxide Thin-Film Transistor based Architecture,” Sci. Rep., vol. 8, no. 1, p. 8153, 2018.
[4] Lin, Y. H., & Lee, C. T. (2017). Stability of Indium Gallium Zinc Aluminum oxide thin-film transistors with treatment processes. Journal of Electronic Materials, 46(2), 936-940.
[5] Han, Y., Yan, H., Tsai, Y. C., Li, Y., Zhang, Q., & Shieh, H. P. D. (2016). Influences of nitrogen doping on the electrical characteristics of Indium-Zinc-Oxide thin film transistors. IEEE Transactions on Device and Materials Reliability, 16(4), 642-646.
[6] Hsu, C. C., Wu, C. H., & Ting, W. C. (2015). Stability improvement of amorphous InGaZnO TFTs by an asymmetric design. Electronics Letters, 51(19), 1534-1536.
[7] Park, S., Bang, S., Lee, S., Park, J., Ko, Y., & Jeon, H. (2011). The effect of annealing ambient on the characteristics of an indium–gallium–zinc oxide thin film transistor. Journal of nanoscience and nanotechnology, 11(7), 6029-6033.
[8] Chong, E., & Lee, S. Y. (2011). Influence of a highly doped buried layer for HfInZnO thin-film transistors. Semiconductor Science and Technology, 27(1), 012001.
[9] Cheng, Y. C., Chang, S. P., Yang, C. P., & Chang, S. J. (2019). Integration of bandgap-engineered double-stacked channel layers with nitrogen doping for high-performance InGaO TFTs. Applied Physics Letters, 114(19), 192102.
[10] Xie, H., Wu, Q., Xu, L., Zhang, L., Liu, G., & Dong, C. (2016). Nitrogen-doped amorphous oxide semiconductor thin film transistors with double-stacked channel layers. Applied Surface Science, 387, 237-243.
[11] Zhan, R., Dong, C., Yang, B. R., & Shieh, H. P. D. (2013). Modulation of interface and bulk states in amorphous InGaZnO thin-film transistors with double stacked channel layers. Japanese Journal of Applied Physics, 52(9R), 090205.