| 研究生: |
張代斌 Chang, Day-Bin |
|---|---|
| 論文名稱: |
以電腦模擬輔助掃描探針設計與製作 Simulation-Aided Design and Fabrication of Scanning Probes |
| 指導教授: |
劉浩志
Liu, Hao-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 微機電系統製程 、原子力顯微鏡 、掃描探針 、懸臂樑 、模擬 |
| 外文關鍵詞: | MEMS, AFM, Scanning probe, Cantilever, Simulation |
| 相關次數: | 點閱:88 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用電腦輔助軟體(Computer-aided software, CAS)及微機電系統製程(Micro-Electro-Mechanical-Systems, MEMS)製造原子力顯微鏡掃描探針(Atomic Force Microscope Probe)。電腦輔助軟體包括AutoCAD繪圖軟體、SolidWorks建模及分析模擬軟體和IntelliSuite微機電專用分析軟體,幫助吾人設計光罩、模擬懸臂樑機械性質以及模擬微機電製程結果。實驗方面以商用AFM探針為範本,結合等向性與非等向性蝕刻方式製造出針尖曲率半徑在10奈米以內之超尖掃描探針,共振頻率為350 ~358 kHz,懸臂樑幾何尺寸為135 X 35 X 5立方微米。以此探針為例,SolidWorks模擬之結果與AFM量測之結果僅有5%以內的誤差。除了超尖掃描探針之外,吾人製作出角度補償探針、火山口探針與Tip-less探針四種功能性探針以增加功能性與可加工性,為改善良率,搭配模組化之設計理念,吾人稱之為模組化探針晶片群組-票券式(Coupon)光罩,將可分批製作增加製程彈性,並提高良率至100%。
本研究以MEMS製程做主軸,搭配電腦輔助軟體模擬並驗證設計理念,成功製造出AFM掃描探針。本實驗架構流程具有製程彈性,可以根據特殊應用客製化,提供一般廠商不能客製化的需求,或是特殊需求者在產品測試階段就必須投入大量資金作量產等等過於高昂的代價,本研究可提供改善探針功能性與降低製程費用等優點。
This study presents a fabrication of atomic force microscope probes using Computer-Aided Software (CAS) and Micro-Electro-Mechanical-Systems(MEMS) process. The computer-aided software including AutoCAD, SolidWorks and IntelliSuite, which help design masks, simulate the mechanical properties of cantilever and predict the etching results. In experiments, we used commercial AFM probe as design target, combine isotropic and anisotropic etching to produce ultra-sharp tips, which radius of curvature less than 10 nm. The geometry of the cantilever is 135 X 35 X 5 μm3, and its resonance frequency is 350~358 kHz measured by AFM. Compared with the simulation results from SolidWorks, the resonant frequency has only 5% error or less. In addition to the ultra-sharp probe, we also fabricated tilt-compensated probes, crater probes and tip-less probes-4 different probes to increase the functionality and workability. To increase the yield, we used modulized design(probe chip coupon). With such design, we can fabricate probes in flexible batches, it increases process flexibility and improves the yield to 100%.
Using MEMS process as the tool, we verified the design concept with computer-aided software, and successfully fabricated AFM probes. The experimental framework has process flexibility to accommodate a variety of functional probes. With such approach, we can customize the probes for special applications; provide the flexibility that vendors cannot offer. Furthermore this study has provided a method to design and fabricate AFM probes with improved functionality and low cost.
參考文獻
[1] G. Binnig, C. Quate,C. Gerber, "Atomic force microscope," Phys Rev Lett, vol. 56, pp. 930-933, Jan 1 (1986).
[2] M. McCord,R. Pease, "Lithography with the scanning tunneling microscope," Journal of Vacuum Science & Technology B: …, Jan 1 (1986).
[3] G. Shahidi, "SOI technology for the GHz era," IBM journal of Research and Development, Jan 1 (2002).
[4] D. Saya, K. Fukushima,H. Toshiyoshi, "Fabrication of single-crystal Si cantilever array," Sensors and actuators A …, Jan 1 (2002).
[5] D. Lee, T. Ono,M. Esashi, "Electrical and thermal recording techniques using a heater integrated microprobe," Journal of Micromechanics and …, Jan 1 (2002).
[6] M. Zhang, et al., "A MEMS nanoplotter with high-density parallel dip-pen manolithography probe arrays," Nanotechnology, vol. 13, pp. 212-217, Jan 1 (2002).
[7] 陳思翰,林鶴南, "彎式近場光學探針彈性係數之量測," 科儀新知, pp. 56-59, (2000).
[8] C. Gibson, G. Watson,S. Myhra, "Determination of the spring constants of probes for force microscopy/spectroscopy," Nanotechnology, Jan 1 (1996).
[9] 陳思翰,林鶴南, "彎式近場光學探針彈性係數之量測," 科儀新知, vol. 第二十一卷第六期, pp. 56-59, (2000).
[10] Gregory T. A. Kovacs, Nadim I. Maluf,K. E. Petersen, "Bulk Micromachining of Silicon," Proceedings of the IEEE, vol. 86, pp. 1536-1551, August 8th (1998).
[11] M. Elwenspoek, "The form of etch rate minima in wet chemical anisotropic etching of silicon," Journal of Micromechanical and Microengineering, vol. 6, pp. 405-409, (1996).
[12] M. Madou, "Fundamentals of microfabrication: the science of miniaturization," books.google.com, Jan 1 (2002).
[13] J. M. Gere,S. P. Timoshenko, "Mechanics of materials," forth ed: McGraw-Hill, 1998, p. 210.
[14] C. E. Knight, The Finite Element Method in Mechanical Design: PWS-KENT. (1993).
[15] P. H. Smith, "A theoretical and experimental analysis of the ellipsometer," Surface Science, vol. 16, pp. 34-66, (1969).
[16] F. A. Vollenbroek, W. P. M. Nijssen, H. J. J. Kroon,B. Yilmaz, "High resolution optical lithography by formation of a built on mask (B.O.M.)," Microelectronic Engineering, vol. 3, pp. 245-252, (1985).
[17] Y. Su, A. G. R. Evans, A. Brunnschweiler, G. Ensell,M. Koch, "Fabrication of improved piezoresistive silicon cantilever probes for the atomic force microscope," Sensors and Actuators A: Physical, vol. 60, pp. 163-167, (1997).
[18] Y. Su, A. Brunnschweiler, A. G. R. Evans,G. Ensell, "Piezoresistive silicon V-AFM cantilevers for high-speed imaging," Sensors and Actuators A: Physical, vol. 76, pp. 139-144, (1999).
[19] K. E. Petersen, "Silicon as a mechanical material," in Proceeding of IEEE, 1982, pp. 450-457.
[20] G. T. A. Kovacs, Micromachined Transducers Sourcesbook: McGraw-Hill,pp. 79. (1998).
[21] D. L. Smith, Thin-film deposition: principles and practice: McGraw-Hill Professional,pp. 35-62. (1995).
[22] S. M. Rossnagel, "Thin film deposition with physical vapor deposition and related technologies," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 21, pp. S74-S87, (2003).
[23] M. Badila, C. Pavelescu,O. Popa, "Breakdown of SiO2 thin films grown in dry O2," Thin Solid Films, vol. 192, pp. 1-5, (1990).
[24] S. Lee, Encyclopedia of chemical processing: CRC Press. (2006).
[25] N. N. Greenwood,A. Earnshaw, Chemistry of the Elements,pp. 393-99. (1984).
[26] 莊達仁, VSLI製造技術: 高立出版社. (1998).
[27] K. E. Petersen, Proceedings of IEEE, vol. 70, p. 420, May (1982).
[28] "RIE蝕刻矽與氮化矽之參數分析," pp. 1-9, Apr 17 (2003).
[29] I. Zubel,M. Kramkowska, "The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions," Sensors and Actuators A: Physical, vol. 93, pp. 138-147, (2001).
[30] K. Sato, et al., "Characterization of orientation-dependent etching properties of single-crystal silicon: effects of KOH concentration," Sensors and Actuators A: Physical, vol. 64, pp. 87-93, (1998).
[31] I. Zubel, "The influence of atomic configuration of (h k l) planes on adsorption processes associated with anisotropic etching of silicon," Sensors and Actuators A: Physical, vol. 94, pp. 76-86, (2001).
[32] H. Tanaka, S. Yamashita, Y. Abe, M. Shikida,K. Sato, "Fast etching of silicon with a smooth surface in high temperature ranges near the boiling point of KOH solution," Sensors and Actuators A: Physical, vol. 114, pp. 516-520, (2004).
[33] Y. Fulong, et al., "Micro-fabrication of crystalline silicon by controlled alkali etching," Journal of Materials Processing Technology, vol. 149, pp. 567-572, (2004).
[34] I. Zubel,M. Kramkowska, "Etch rates and morphology of silicon (h k l) surfaces etched in KOH and KOH saturated with isopropanol solutions," Sensors and Actuators A: Physical, vol. 115, pp. 549-556, (2004).
[35] E. van Veenendaal, K. Sato, M. Shikida,J. van Suchtelen, "Micromorphology of single crystalline silicon surfaces during anisotropic wet chemical etching in KOH and TMAH," Sensors and Actuators A: Physical, vol. 93, pp. 219-231, (2001).
[36] M. Sekimura, "Anisotropic etching of surfactant-added TMAH solution," in Micro Electro Mechanical Systems, 1999. MEMS '99. Twelfth IEEE International Conference on, 1999, pp. 650-655.
[37] M. Shikida, K. Sato, K. Tokoro,D. Uchikawa, "Differences in anisotropic etching properties of KOH and TMAH solutions," Sensors and Actuators A: Physical, vol. 80, pp. 179-188, (2000).
[38] R. A. Wind, H. Jones, M. J. Little,M. A. Hines, "Orientation-resolved chemical kinetics: Using microfabrication to unravel the complicated chemistry of KOH/Si etching," Journal of Physical Chemistry B, vol. 106, pp. 1557-1569, Feb (2002).
[39] W. Haiss, et al., "Surface termination and hydrogen bubble adhesion on Si(1 0 0) surfaces during anisotropic dissolution in aqueous KOH," Journal of Electroanalytical Chemistry, vol. 597, pp. 1-12, (2006).
[40] S. Chandrasekaran, J. Check, S. Sundararajan,P. Shrotriya, "The effect of anisotropic wet etching on the surface roughness parameters and micro/nanoscale friction behavior of Si(1 0 0) surfaces," Sensors and Actuators A: Physical, vol. 121, pp. 121-130, (2005).
[41] C.-R. Yang, P.-Y. Chen, Y.-C. Chiou,R.-T. Lee, "Effects of mechanical agitation and surfactant additive on silicon anisotropic etching in alkaline KOH solution," Sensors and Actuators A: Physical, vol. 119, pp. 263-270, (2005).
[42] B. Schwartz,H. Robbins, "Chemical Etching of Silicon," Journal of The Electrochemical Society, vol. 123, pp. 1903-1909, (1976).
[43] Veeco Probe. Veeco Instruments, https://www.veecoprobes.com/.
校內:2020-12-31公開