| 研究生: |
王志銘 Wang, Chih-Ming |
|---|---|
| 論文名稱: |
探討厭惡性嗅覺制約所形成的記憶痕跡 Investigating memory trace formation of aversive olfactory conditioning |
| 指導教授: |
姜學誠
Chiang, Hsueh-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 學習與記憶 、記憶痕跡細胞 、長期記憶 、黑腹果蠅 |
| 外文關鍵詞: | drosophila, aversive olfactory conditioning, memory trace |
| 相關次數: | 點閱:136 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當記憶無法儲存在細胞時,會導致動物無法對後續出現的線索做出反應。雖然越來越多文獻指出重新活化記憶痕跡細胞,可以將細胞從不可存取的狀態切換到可存取的狀態,但其中的細胞和分子機制仍不得其解。我們以果蠅作為動物模型來證明單次厭惡性嗅覺制約的記憶存儲在KCαβ中,即便在學習後的幾個小時內逐漸淡忘,但重新活化後仍然可以提取出記憶。此外,單次厭惡性嗅覺制約也會刺激蛋白質的生合成,利用creb在KCαβ中形成長達20天的記憶痕跡,及orb在MBON-α3中形成約1天的記憶痕跡;而PPL1-α3雖然沒有形成蛋白質,但以負向調節的方式參與在記憶提取的神經迴路中。我們的成果說明KCαβ、PPL1-α3和MBON-α3共同調節單次厭惡性嗅覺制約的記憶形成和記憶提取,又KCαβ與MBON-α3分別在不同的時間點形成活化狀態和沈默狀態的記憶痕跡細胞。
另外,我們也發現學習後未固化的記憶仍然保留在大腦中,藉由刺激與再次活化相關的神經迴路,便可以讀取這些未固化的記憶轉換而來的記憶。關於遺忘的機制,我們證實主動遺忘和被動遺忘皆具有可提取的性質,在時間自然遞進的過程記憶痕跡會在20天後消失,倘若制約的記憶被干擾,記憶痕跡則會在短時間內抹滅。我們的發現解釋了記憶的形成與遺忘的機制,也有助於理解病理性遺忘如自閉症與阿茲海默症。
Forgetting, fail to recall the previous learned experience, is the nature behavior to the animal that helps brain to reorganize the memory storage by removing outdated or unnecessary information. Although recent studies have shown that it is possible to retrieve previous un-recalled memory, the detailed cellular and molecular mechanism remains elusive. The current study showed that the memory of one-cycle of olfactory aversive conditioning is recallable after a second mild training even 8 days after first training. Previous learned experience during forgetting is not permanently removed but hided in the brain and is retrievable upon certain stimulation. Our data also showed that one-cycle of olfactory aversive conditioning induces protein synthesis to form memory trace in mushroom body α/β neurons and downstream MBON-α3. Further study showed that reduced PPL1-α3 neurons activity facilitate the forgotten memory retrieval. The formed tripartite synapse connection among MBNs, PPL1 neurons and MBONs regulates memory formation and forgetting. Furthermore, we found that passive forgetting and active forgetting possess similar way to decline the memory but with different decay rate. Together, our results indicate that the information of one-cycle of olfactory aversive conditioning forms a retrievable long lasting memory trace in the brain with a neural circuit similar to the formation of long-term memory
Abdou, K., Shehata, M., Choko, K., Nishizono, H., Matsuo, M., Muramatsu, S., and Inokuchi, K. (2018). Synapse-specific representation of the identity of overlapping memory engrams. Science 360, 1227–1231. https://doi.org/10.1126/science.aat3810.
Akalal, D.-B.G., Yu, D., and Davis, R.L. (2011). The Long-Term Memory Trace Formed in the Drosophila α/β Mushroom Body Neurons Is Abolished in Long-Term Memory Mutants. J. Neurosci. 31, 5643–5647. https://doi.org/10.1523/JNEUROSCI.3190-10.2011.
Anderson, M.C., and Hulbert, J.C. (2021). Active forgetting: Adaptation of memory by prefrontal control. Annual Review of Psychology 72, 1–36. https://doi.org/10.1146/annurev-psych-072720-094140.
Aso, Y., Hattori, D., Yu, Y., Johnston, R.M., Iyer, N.A., Ngo, T.-T., Dionne, H., Abbott, L., Axel, R., Tanimoto, H., et al. (2014). The neuronal architecture of the mushroom body provides a logic for associative learning. ELife 3, e04577. https://doi.org/10.7554/eLife.04577.
Barron, H.C., Vogels, T.P., Behrens, T.E., and Ramaswami, M. (2017). Inhibitory engrams in perception and memory. Proceedings of the National Academy of Sciences 114, 6666–6674. https://doi.org/10.1073/pnas.1701812114.
Berry, J.A., and Davis, R.L. (2014). Chapter 2 - Active Forgetting of Olfactory Memories in Drosophila. In Progress in Brain Research, E. Barkai, and D.A. Wilson, eds. (Elsevier), pp. 39–62.
Berry, J.A., Cervantes-Sandoval, I., Nicholas, E.P., and Davis, R.L. (2012). Dopamine Is Required for Learning and Forgetting in Drosophila. Neuron 74, 530–542. https://doi.org/10.1016/j.neuron.2012.04.007.
Blum, A.L., Li, W., Cressy, M., and Dubnau, J. (2009). Short- and Long-Term Memory in Drosophila Require cAMP Signaling in Distinct Neuron Types. Current Biology 19, 1341–1350. https://doi.org/10.1016/j.cub.2009.07.016.
Cervantes-Sandoval, I., Martin-Peña, A., Berry, J.A., and Davis, R.L. (2013). System-Like Consolidation of Olfactory Memories in Drosophila. J. Neurosci. 33, 9846–9854. https://doi.org/10.1523/JNEUROSCI.0451-13.2013.
Cervantes-Sandoval, I., Phan, A., Chakraborty, M., and Davis, R.L. (2017). Reciprocal synapses between mushroom body and dopamine neurons form a positive feedback loop required for learning. ELife 6, e23789. https://doi.org/10.7554/eLife.23789.
Chang, J.S., Tan, L., and Schedl, P. (1999). The Drosophila CPEB Homolog, Orb, Is Required for Oskar Protein Expression in Oocytes. Developmental Biology 215, 91–106. https://doi.org/10.1006/dbio.1999.9444.
Chen, C.-C., Wu, J.-K., Lin, H.-W., Pai, T.-P., Fu, T.-F., Wu, C.-L., Tully, T., and Chiang, A.-S. (2012). Visualizing long-term memory formation in two neurons of the Drosophila brain. Science 335, 678–685. https://doi.org/10.1126/science.1212735.
Christerson, L.B., and McKearin, D.M. (1994). orb is required for anteroposterior and dorsoventral patterning during Drosophila oogenesis. Genes Dev. 8, 614–628. https://doi.org/10.1101/gad.8.5.614.
Crittenden, J.R., Skoulakis, E.M.C., Han, K.-A., Kalderon, D., and Davis, R.L. (1998). Tripartite Mushroom Body Architecture Revealed by Antigenic Markers. Learn. Mem. 5, 38–51. https://doi.org/10.1101/lm.5.1.38.
Das, S., Singer, R.H., and Yoon, Y.J. (2019). The travels of mRNAs in neurons: do they know where they are going? Current Opinion in Neurobiology 57, 110–116. https://doi.org/10.1016/j.conb.2019.01.016.
Davis, R.L. (2011). Traces of Drosophila Memory. Neuron 70, 8–19. https://doi.org/10.1016/j.neuron.2011.03.012.
Davis, R.L., and Zhong, Y. (2017). The Biology of Forgetting—A Perspective. Neuron 95, 490–503. https://doi.org/10.1016/j.neuron.2017.05.039.
Dong, T., He, J., Wang, S., Wang, L., Cheng, Y., and Zhong, Y. (2016). Inability to activate Rac1-dependent forgetting contributes to behavioral inflexibility in mutants of multiple autism-risk genes. Proceedings of the National Academy of Sciences 113, 7644–7649. https://doi.org/10.1073/pnas.1602152113.
Dubnau, J., and Chiang, A.-S. (2013). Systems memory consolidation in Drosophila. Current Opinion in Neurobiology 23, 84–91. https://doi.org/10.1016/j.conb.2012.09.006.
Feng, K.-L., Weng, J.-Y., Chen, C.-C., Abubaker, M.B., Lin, H.-W., Charng, C.-C., Lo, C.-C., de Belle, J.S., Tully, T., Lien, C.-C., et al. (2021). Neuropeptide F inhibits dopamine neuron interference of long-term memory consolidation in Drosophila. IScience 24, 103506. https://doi.org/10.1016/j.isci.2021.103506.
Folkers, E., Drain, P., and Quinn, W.G. (1993). Radish, a Drosophila mutant deficient in consolidated memory. Proceedings of the National Academy of Sciences 90, 8123–8127. https://doi.org/10.1073/pnas.90.17.8123.
Gao, Y., Shuai, Y., Zhang, X., Peng, Y., Wang, L., He, J., Zhong, Y., and Li, Q. (2019). Genetic dissection of active forgetting in labile and consolidated memories in Drosophila. Proceedings of the National Academy of Sciences 116, 21191–21197. https://doi.org/10.1073/pnas.1903763116.
Himmelreich, S., Masuho, I., Berry, J.A., MacMullen, C., Skamangas, N.K., Martemyanov, K.A., and Davis, R.L. (2017). Dopamine Receptor DAMB Signals via Gq to Mediate Forgetting in Drosophila. Cell Reports 21, 2074–2081. https://doi.org/10.1016/j.celrep.2017.10.108.
Isabel, G., Pascual, A., and Preat, T. (2004). Exclusive Consolidated Memory Phases in Drosophila. Science 304, 1024–1027. https://doi.org/10.1126/science.1094932.
Jacob, P.F., and Waddell, S. (2020). Spaced Training Forms Complementary Long-Term Memories of Opposite Valence in Drosophila. Neuron 106, 977-991.e4. https://doi.org/10.1016/j.neuron.2020.03.013.
Kim, J., Kwon, J.-T., Kim, H.-S., Josselyn, S.A., and Han, J.-H. (2014). Memory recall and modifications by activating neurons with elevated CREB. Nat Neurosci 17, 65–72. https://doi.org/10.1038/nn.3592.
Krashes, M.J., Keene, A.C., Leung, B., Armstrong, J.D., and Waddell, S. (2007). Sequential Use of Mushroom Body Neuron Subsets during Drosophila Odor Memory Processing. Neuron 53, 103–115. https://doi.org/10.1016/j.neuron.2006.11.021.
Lee, J., Urban-Ciecko, J., Park, E., Zhu, M., Myal, S.E., Margolis, D.J., and Barth, A.L. (2021). FosGFP expression does not capture a sensory learning-related engram in superficial layers of mouse barrel cortex. Proceedings of the National Academy of Sciences 118, e2112212118. https://doi.org/10.1073/pnas.2112212118.
Letzkus, J.J., Wolff, S.B.E., and Lüthi, A. (2015). Disinhibition, a Circuit Mechanism for Associative Learning and Memory. Neuron 88, 264–276. https://doi.org/10.1016/j.neuron.2015.09.024.
Li, W., Tully, T., and Kalderon, D. (1996). Effects of a conditional Drosophila PKA mutant on olfactory learning and memory. Learn. Mem. 2, 320–333. https://doi.org/10.1101/lm.2.6.320.
Lin, H.-W., Chen, C.-C., de Belle, J.S., Tully, T., and Chiang, A.-S. (2021). CREBA and CREBB in two identified neurons gate long-term memory formation in Drosophila. Proceedings of the National Academy of Sciences 118, e2100624118. https://doi.org/10.1073/pnas.2100624118.
Liu, X., Ramirez, S., Pang, P.T., Puryear, C.B., Govindarajan, A., Deisseroth, K., and Tonegawa, S. (2012). Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484, 381–385. https://doi.org/10.1038/nature11028.
Liu, Y., Du, S., Lv, L., Lei, B., Shi, W., Tang, Y., Wang, L., and Zhong, Y. (2016). Hippocampal Activation of Rac1 Regulates the Forgetting of Object Recognition Memory. Current Biology 26, 2351–2357. https://doi.org/10.1016/j.cub.2016.06.056.
Liu, Y., Lv, L., Wang, L., and Zhong, Y. (2018). Social Isolation Induces Rac1-Dependent Forgetting of Social Memory. Cell Reports 25, 288-295.e3. https://doi.org/10.1016/j.celrep.2018.09.033.
Margulies, C., Tully, T., and Dubnau, J. (2005). Deconstructing Memory in Drosophila. Current Biology 15, R700–R713. https://doi.org/10.1016/j.cub.2005.08.024.
McGuire, S.E., Le, P.T., and Davis, R.L. (2001). The Role of Drosophila Mushroom Body Signaling in Olfactory Memory. Science 293, 1330–1333. https://doi.org/10.1126/science.1062622.
Miller, R.R. (2021). Failures of memory and the fate of forgotten memories. Neurobiology of Learning and Memory 181, 107426. https://doi.org/10.1016/j.nlm.2021.107426.
Miyashita, T., Kikuchi, E., Horiuchi, J., and Saitoe, M. (2018). Long-Term Memory Engram Cells Are Established by c-Fos/CREB Transcriptional Cycling. Cell Reports 25, 2716-2728.e3. https://doi.org/10.1016/j.celrep.2018.11.022.
Moffat, K.G., Gould, J.H., Smith, H.K., and O’Kane, C.J. (1992). Inducible cell ablation in Drosophila by cold-sensitive ricin A chain. Development 114, 681–687. https://doi.org/10.1242/dev.114.3.681.
Nambu, M.F., Lin, Y.-J., Reuschenbach, J., and Tanaka, K.Z. (2022). What does engram encode?: Heterogeneous memory engrams for different aspects of experience. Current Opinion in Neurobiology 75, 102568. https://doi.org/10.1016/j.conb.2022.102568.
Okuyama, T., Kitamura, T., Roy, D.S., Itohara, S., and Tonegawa, S. (2016). Ventral CA1 neurons store social memory. Science 353, 1536–1541. https://doi.org/10.1126/science.aaf7003.
Pai, T.-P., Chen, C.-C., Lin, H.-H., Chin, A.-L., Lai, J.S.-Y., Lee, P.-T., Tully, T., and Chiang, A.-S. (2013). Drosophila ORB protein in two mushroom body output neurons is necessary for long-term memory formation. Proceedings of the National Academy of Sciences 110, 7898–7903. https://doi.org/10.1073/pnas.1216336110.
Park, H.Y., Lim, H., Yoon, Y.J., Follenzi, A., Nwokafor, C., Lopez-Jones, M., Meng, X., and Singer, R.H. (2014). Visualization of Dynamics of Single Endogenous mRNA Labeled in Live Mouse. Science 343, 422–424. https://doi.org/10.1126/science.1239200.
Perisse, E., Yin, Y., Lin, A.C., Lin, S., Huetteroth, W., and Waddell, S. (2013). Different Kenyon Cell Populations Drive Learned Approach and Avoidance in Drosophila. Neuron 79, 945–956. https://doi.org/10.1016/j.neuron.2013.07.045.
Plaçais, P.-Y., Trannoy, S., Friedrich, A.B., Tanimoto, H., and Preat, T. (2013). Two Pairs of Mushroom Body Efferent Neurons Are Required for Appetitive Long-Term Memory Retrieval in Drosophila. Cell Reports 5, 769–780. https://doi.org/10.1016/j.celrep.2013.09.032.
Poo, M., Pignatelli, M., Ryan, T.J., Tonegawa, S., Bonhoeffer, T., Martin, K.C., Rudenko, A., Tsai, L.-H., Tsien, R.W., Fishell, G., et al. (2016). What is memory? The present state of the engram. BMC Biol 14, 40. https://doi.org/10.1186/s12915-016-0261-6.
Qin, H., Cressy, M., Li, W., Coravos, J.S., Izzi, S.A., and Dubnau, J. (2012). Gamma Neurons Mediate Dopaminergic Input during Aversive Olfactory Memory Formation in Drosophila. Current Biology 22, 608–614. https://doi.org/10.1016/j.cub.2012.02.014.
Quinn, W.G., and Dudai, Y. (1976). Memory phases in Drosophila. Nature 262, 576–577. https://doi.org/10.1038/262576a0.
Quinn, W.G., Sziber, P.P., and Booker, R. (1979). The Drosophila memory mutant amnesiac. Nature 277, 212–214. https://doi.org/10.1038/277212a0.
Reijmers, L.G., Perkins, B.L., Matsuo, N., and Mayford, M. (2007). Localization of a Stable Neural Correlate of Associative Memory. Science 317, 1230–1233. https://doi.org/10.1126/science.1143839.
Roy, D.S., Arons, A., Mitchell, T.I., Pignatelli, M., Ryan, T.J., and Tonegawa, S. (2016). Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease. Nature 531, 508–512. https://doi.org/10.1038/nature17172.
Ryan, T.J., and Frankland, P.W. (2022). Forgetting as a form of adaptive engram cell plasticity. Nat Rev Neurosci 23, 173–186. https://doi.org/10.1038/s41583-021-00548-3.
Ryan, T.J., Roy, D.S., Pignatelli, M., Arons, A., and Tonegawa, S. (2015). Engram cells retain memory under retrograde amnesia. Science 348, 1007–1013. https://doi.org/10.1126/science.aaa5542.
Scheffer, L.K., Xu, C.S., Januszewski, M., Lu, Z., Takemura, S., Hayworth, K.J., Huang, G.B., Shinomiya, K., Maitlin-Shepard, J., Berg, S., et al. A connectome and analysis of the adult Drosophila central brain. ELife 9, e57443. https://doi.org/10.7554/eLife.57443.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods 9, 676-682.
Séjourné, J., Plaçais, P.-Y., Aso, Y., Siwanowicz, I., Trannoy, S., Thoma, V., Tedjakumala, S.R., Rubin, G.M., Tchénio, P., Ito, K., et al. (2011). Mushroom body efferent neurons responsible for aversive olfactory memory retrieval in Drosophila. Nat Neurosci 14, 903–910. https://doi.org/10.1038/nn.2846.
Shuai, Y., Lu, B., Hu, Y., Wang, L., Sun, K., and Zhong, Y. (2010). Forgetting Is Regulated through Rac Activity in Drosophila. Cell 140, 579–589. https://doi.org/10.1016/j.cell.2009.12.044.
Smolik, S.M., Rose, R.E., and Goodman, R.H. (1992). A cyclic AMP-responsive element-binding transcriptional activator in Drosophila melanogaster, dCREB-A, is a member of the leucine zipper family. Molecular and Cellular Biology 12, 4123–4131. https://doi.org/10.1128/mcb.12.9.4123-4131.1992.
Squire, L.R., Genzel, L., Wixted, J.T., and Morris, R.G. (2015). Memory Consolidation. Cold Spring Harb Perspect Biol 7, a021766. https://doi.org/10.1101/cshperspect.a021766.
Stebbins-Boaz, B., Hake, L.E., and Richter, J.D. (1996). CPEB controls the cytoplasmic polyadenylation of cyclin, Cdk2 and c-mos mRNAs and is necessary for oocyte maturation in Xenopus. The EMBO Journal 15, 2582–2592. https://doi.org/10.1002/j.1460-2075.1996.tb00616.x.
Takemura, S., Aso, Y., Hige, T., Wong, A., Lu, Z., Xu, C.S., Rivlin, P.K., Hess, H., Zhao, T., Parag, T., et al. (2017). A connectome of a learning and memory center in the adult Drosophila brain. ELife 6, e26975. https://doi.org/10.7554/eLife.26975.
Tonegawa, S., Pignatelli, M., Roy, D.S., and Ryan, T.J. (2015). Memory engram storage and retrieval. Current Opinion in Neurobiology 35, 101–109. https://doi.org/10.1016/j.conb.2015.07.009.
Tonegawa, S., Morrissey, M.D., and Kitamura, T. (2018). The role of engram cells in the systems consolidation of memory. Nat Rev Neurosci 19, 485–498. https://doi.org/10.1038/s41583-018-0031-2.
Trouche, S., Sasaki, J.M., Tu, T., and Reijmers, L.G. (2013). Fear Extinction Causes Target-Specific Remodeling of Perisomatic Inhibitory Synapses. Neuron 80, 1054–1065. https://doi.org/10.1016/j.neuron.2013.07.047.
Tully, T., Preat, T., Boynton, S.C., and Del Vecchio, M. (1994). Genetic dissection of consolidated memory in Drosophila. Cell 79, 35–47. https://doi.org/10.1016/0092-8674(94)90398-0.
Tulving, E. (1974). Cue-Dependent Forgetting: When we forget something we once knew, it does not necessarily mean that the memory trace has been lost; it may only be inaccessible. American Scientist 62, 74–82. .
Turrel, O., Goguel, V., and Preat, T. (2018). Amnesiac Is Required in the Adult Mushroom Body for Memory Formation. J. Neurosci. 38, 9202–9214. https://doi.org/10.1523/JNEUROSCI.0876-18.2018.
Usui, T., Smolik, S.M., and Goodman, R.H. (1993). Isolation of Drosophila CREB-B: A Novel CRE-Binding Protein. DNA and Cell Biology 12, 589–595. https://doi.org/10.1089/dna.1993.12.589.
Vallentin, D., Kosche, G., Lipkind, D., and Long, M.A. (2016). Inhibition protects acquired song segments during vocal learning in zebra finches. Science 351, 267–271. https://doi.org/10.1126/science.aad3023.
Wang, J.W., Wong, A.M., Flores, J., Vosshall, L.B., and Axel, R. (2003). Two-Photon Calcium Imaging Reveals an Odor-Evoked Map of Activity in the Fly Brain. Cell 112, 271-282.
Wang, Y., Mamiya, A., Chiang, A., and Zhong, Y. (2008). Imaging of an Early Memory Trace in the Drosophila Mushroom Body. J. Neurosci. 28, 4368–4376. https://doi.org/10.1523/JNEUROSCI.2958-07.2008.
Wilhelm, J.E., and Smibert, C.A. (2005). Mechanisms of translational regulation in Drosophila. Biology of the Cell 97, 235–252. https://doi.org/10.1042/BC20040097.
Wixted, J.T. (2004). The psychology and neuroscience of forgetting. Annu Rev Psychol 55, 235–269. https://doi.org/10.1146/annurev.psych.55.090902.141555.
Wu, C.-L., Shih, M.-F.M., Lee, P.-T., and Chiang, A.-S. (2013). An Octopamine-Mushroom Body Circuit Modulates the Formation of Anesthesia-Resistant Memory in Drosophila. Current Biology 23, 2346–2354. https://doi.org/10.1016/j.cub.2013.09.056.
Wu, C.-L., Fu, T.-F., Chou, Y.-Y., and Yeh, S.-R. (2015). A Single Pair of Neurons Modulates Egg-Laying Decisions in Drosophila. PLOS ONE 10, e0121335. https://doi.org/10.1371/journal.pone.0121335.
Wu, J.-K., Tai, C.-Y., Feng, K.-L., Chen, S.-L., Chen, C.-C., and Chiang, A.-S. (2017). Long-term memory requires sequential protein synthesis in three subsets of mushroom body output neurons in Drosophila. Sci Rep 7, 7112. https://doi.org/10.1038/s41598-017-07600-2.
Wu, W., Du, S., Shi, W., Liu, Y., Hu, Y., Xie, Z., Yao, X., Liu, Z., Ma, W., Xu, L., et al. (2019). Inhibition of Rac1-dependent forgetting alleviates memory deficits in animal models of Alzheimer’s disease. Protein Cell 10, 745–759. https://doi.org/10.1007/s13238-019-0641-0.
Xie, Z., Huang, C., Ci, B., Wang, L., and Zhong, Y. (2013). Requirement of the combination of mushroom body γ lobe and α/β lobes for the retrieval of both aversive and appetitive early memories in Drosophila. Learn. Mem. 20, 474–481. https://doi.org/10.1101/lm.031823.113.
Yamazaki, D., Hiroi, M., Abe, T., Shimizu, K., Minami-Ohtsubo, M., Maeyama, Y., Horiuchi, J., and Tabata, T. (2018). Two Parallel Pathways Assign Opposing Odor Valences during Drosophila Memory Formation. Cell Reports 22, 2346–2358. https://doi.org/10.1016/j.celrep.2018.02.012.
Yin, J.C.P., Del Vecchio, M., Zhou, H., and Tully, T. (1995). CREB as a Memory Modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in drosophila. Cell 81, 107–115. https://doi.org/10.1016/0092-8674(95)90375-5.
Yu, D., Akalal, D.-B.G., and Davis, R.L. (2006). Drosophila α/β Mushroom Body Neurons Form a Branch-Specific, Long-Term Cellular Memory Trace after Spaced Olfactory Conditioning. Neuron 52, 845–855. https://doi.org/10.1016/j.neuron.2006.10.030.
Zhang, X., Li, Q., Wang, L., Liu, Z.-J., and Zhong, Y. (2016). Cdc42-Dependent Forgetting Regulates Repetition Effect in Prolonging Memory Retention. Cell Reports 16, 817–825. https://doi.org/10.1016/j.celrep.2016.06.041.