| 研究生: |
盧彥名 Lu, Yen-Ming |
|---|---|
| 論文名稱: |
雙軸位移平臺強健控制設計及雷射觸發策略 Robust Control Design Applied on X-Y Positioning Stage and Laser Emission Strategy |
| 指導教授: |
蔡明祺
Tsai, Mi-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 雙軸平臺 、雷射 、權重混合靈敏度設計 、迴路成形設計 、鬆弛性能準則 、前饋控制 |
| 外文關鍵詞: | X-Y positioning stage, laser, weighted mixed sensitivity problem (WMS), loop shaping design problem (LSDP), feedforward control |
| 相關次數: | 點閱:188 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文討論雙軸雷射平臺加工時,在加減速區間所存在之雷射能量累積問題,並提出對伺服運動系統與雷射觸發系統,進行時間匹配設計達到所有加工區域中能量均勻分布。在伺服運動系統設計上,為了解決因裝配誤差或聯接軸承之剛性所造成的系統不確定性,本研究在設計速度控制器時,將基於 權重混合靈敏度設計問題,並結合迴路成形設計法的概念,使受控系統在不確性的影響下,仍可保持穩定並滿足設計者所需之響應規格。而針對位置輪廓控制策略,採取解耦合之控制架構,使各軸位置迴路符合鬆弛性能準則,即在各軸間有互相匹配的時間延遲,便可有效降低輪廓誤差。在雷射觸發系統設計上,若不希望雷射能量於加減速區有所累積,則輸出能量之大小須根據伺服移動速度作相對應的改變,同時利用伺服軸存在之延遲時間資訊作為調整雷射能量觸發之前置處理,便可使兩系統之響應進行匹配,以獲得良好的加工效果。
This thesis is aimed at solving the problem of laser energy accumulation happened in the operating region of acceleration or deceleration during the process of X-Y laser positioning, and the countermeasure of the time-based synchronous design between servo motion system and laser emission system is proposed. In the servo motion system design, the system uncertainty problem caused by assembly inaccuracy or stiffness of coupling is considered; thus, the design of velocity controller is based on weighted mixed sensitivity problem (WMS) and combined with the concept of loop shaping design problem (LSDP) to secure the performance of servo motion system under the effect of system uncertainty. For laser emission system, to avoid the laser energy accumulation phenomenon, the energy density is adjusted responding to the stage velocity. Meanwhile, according to the relaxed performance measure, the contouring error can be minimized when the delay times of two axes are the same. Further, the delay time of servo system was used to regulate the emission signal of laser system by feedforward control. Consequently, the response of these two systems is synchronous, and the better processing quality can be obtained.
[1] B. A. Francis, A. R. Tannenbaum and J. C. Doyle, “Feedback Control Theory,” Macmillan Publishing Co., 1992.
[2] B. Cox, “Precise Triggering of External Events Based on Axis Position,” Motion Control & Automation Supplement, 2006.
[3] D. C. McFarlane and K. Glover, “Robust Controller Design using Normalized Coprime Factor Plant Descriptions,” Springer Verlag, Lecture Notes in Control and Information Sciences, vol. 138, 1989.
[4] D. Orfanus, et al. "EtherCAT-based Platform for Distributed Control in High-performance Industrial Applications," Emerging Technologies & Factory Automation (ETFA), 2013 IEEE 18th Conference on. IEEE, 2013.
[5] H. Gross, J. Hamann, G. Wiegärtner, “Electrical Feed Drives in Automation,” Munich: Publicis MCD Corporate Publishing.
[6] H. Kimura, “Chain-scattering approach to H∞ control,” Springer Science & Business Media, 1996.
[7] H. Kwakernaak, “A Polynomial Approach to Minimax Frequency Domain Optimization of Multivariable System,” Int. J. Control, Vol. 44, pp. 117-156, 1986.
[8] http://www.laserfocusworld.com/articles/print/volume-52/issue-01/features/annual-laser-market-review-forecast-can-laser-markets-trump-a-global-slowdown.html
[9] http://www.wavelab-sci.com.tw/technical_read.php?num=28
[10] J. Hatwing, G. Reinhart and M. F. Zaeh, “Automated Task Planning for Industrial Robot and Laser Scanners for Remote Laser Beam Welding and Cutting,” Pod. Eng., Vol. 4, Issue 4, pp. 327-332, 2010.
[11] J. P. Kruth, P. Mercelis, J. Van Vaerenbergh and T. Craeghs, “Feedback control of Selective Laser Melting,” 3rd International Conference on Advanced Research in Virtual and Rapid Prototyping, pp. 521-527, Sep. 2007.
[12] K. Yoon, J. Lee, K. Kim and J. Suh, “Scanner-Stage Synchronization Control Method for Laser Fabrication of Large Area,” Proc. Of KSME Spring Conf., pp. 44-46, 2010.
[13] K. Yoon, K. Kim and J. Lee, “Development of a Path Generation Algorithm for Large-Area Laser Pattern Using a Manual-Input Control-Point,” Journal of Laser Micro/Nanoengineering, Vol. 10, No. 2, pp. 234-240, 2015.
[14] M. V. Elsen, “Selective Laser Melting: a new optimisation approach,” PhD thesis, Katholieke Universiteit Leuven, Jan. 2007.
[15] M. C. Tsai, and D. W. Gu, “Robust and Optimal Control: A Two-port Framework Approach,” London: Springer, 2014.
[16] M. C. Tsai, “State Space Formulae for Spectral Factorizations,” Journal of the Chinese Society of Mechanical Engineers, Vol.14, No.6, pp.540-552, 1993.
[17] M. Dahleh, M. A. Dahleh and G. Verghese, “Lectures on Dynamic System and Control,” Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 2002.
[18] M. J. Grimble, “Robust Industrial Control Systems: Optimal Design Approach for Polynomial Systems,” John Wiley & Sons, 2006.
[19] M. Y. Lee, “Kinematic/Kinetic, and Dynamic Performance Synthesis for Multi-DOF Mechanisms,” Ph. D. Thesis, University of Minnesota, USA, 1991.
[20] M. Y. Lee, T. Holt and JR. A. J. Strum, “A Contribution to Multi-axis Robot Contouring Accuracy Analysis: Modeling, Simulation and Evaluation,” ASME J. of Mechanical Design, Vol. 113, pp. 526-535, 1991.
[21] S. P. Tseng and H. H. Tang, “A Uniform Laser Energy Density Controller for the Rapid Prototype Processing,” Journal of the Chinese Institute of Engineer, Vol. 33, No. 3, pp. 405-414, 2010.
[22] 申秉弘,「鏈散射描述法求解控制器合成及其於線性伺服系統強健設計之應用」,國立成功大學機械工程學系,博士論文,2006年。
[23] 林如錚,「應用於雷射振鏡掃描畸變補償之系統控制設計」,國立交通大學電控工程研究所,碩士論文,2012年。
[24] 徐玉麟、陳強智、張聰德,「紫外光雷射切割加工技術之發展現況」,機械工業雜誌,2010年二月。
[25] 張國順,「現代雷射製造技術」,新文京開發出版股份有限公司,2008年。
[26] 莊宏祥,「伺服控制系統之強健設計與實現」,國立成功大學機械工程學系,博士論文,2001年。
[27] 顏嘉谷,「工件不等速運動下雷射照射之能量密度均勻化控制」,國立交通大學電控工程研究所,碩士論文,2012年。