簡易檢索 / 詳目顯示

研究生: 王梅馨
Wang, Mei-Shin
論文名稱: 具可曲性結構行人下肢衝擊器之設計與驗證
Design and Validation of a Structural Flexibility Pedestrian Lower Legform
指導教授: 黃才烱
Huang, Tsai-Jeon
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 134
中文關鍵詞: 行人碰撞下肢衝擊器驗證測試生物擬真性
外文關鍵詞: Pedestrian Impact, Lower Legform Impactor, Certification Tests, Biofidelity
相關次數: 點閱:93下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今汽車除了講求性能、舒適,行車安全也因為車禍發生頻率的提高而逐漸受到重視。車禍發生時除了車內乘員會受到傷害,車體外的行人等用路人亦處於危險之中。日本和歐盟的行人死亡數佔所有道路死亡數的比例分別為30%和16%,開發中國家更超過了50%。在非致命的行人碰撞意外中,下肢傷害所佔比例最大,其常見的傷害機制為骨折或膝關節軟組織的損傷,因所需復健時間冗長,故不可忽略其嚴重性。
    歐洲促進汽車安全委員會(EEVC)提出的次系統測試方法是用來評估行人遭受車輛側向撞擊的運動反應和傷害,其中,在下肢傷害研究方面是採用下肢衝擊器對保險桿碰撞測試進行模擬。目前已發展出的下肢衝擊器實體包含剛體下肢衝擊器(TRL)和撓性下肢衝擊器(JAMA-JARI),這兩種下肢衝擊器各有其優缺點。本研究的目的是修改現行的下肢衝擊器模型,並期望模型仍然具有高度的生物擬真性,且成本較低,易於製造、裝配,以作為日後模型實體化的參考,並可進而將其應用在其它相關測試及行人被動安全系統的研發。
    建立具有良好生物擬真性的下肢衝擊器模型是設計行人安全防護設備之基礎,為了證明設計出來的下肢衝擊器具有生物擬真性,必須經過驗證測試,驗證的方法和生物驗證區間是根據大體實驗而來。本研究首先建立仿人體幾何外形的下肢衝擊器有限元素模型,並利用LS-DYNA軟體進行與大體實驗相同的測試,以驗證模型的生物擬真性;而用來評斷模型是否具有生物擬真性的標準是CVR值。驗證測試包含部件測試和組件測試,部件測試為小腿三點側向彎曲測試和膝關節四點側向彎曲測試;組件測試則為整體下肢衝擊器的彎曲測試和剪切測試。
    驗證測試完成後,針對測試結果探討模型是否具有生物擬真性,並與現行兩種下肢衝擊器實體的行為反應作比較,最後以下肢衝擊器對保險桿進行碰撞模擬作為應用範例。

    Nowadays automobiles are with good performance and comfortable; however, safety gradually becomes an issue because of high incidence of traffic accidents. Except for occupants injured in traffic accidents, other vulnerable road users, like pedestrians, are also in danger. Pedestrians make up 16% of all road traffic fatalities in the EU and over 30% in Japan, their percentage can exceed 50% in developing countries. In nonfatal car-pedestrian accidents, lower extremities are the most commonly injured body parts. Bone fractures, ligament and meniscus avulsion are common injury mechanisms. Since recovery processes of these injuries are typically lengthy, it is inadvisable to ignore such a problem.
    EEVC proposed sub-system tests to evaluate responses and injuries of pedestrians in lateral car-pedestrian accidents, in which lower legform to bumper tests are used to investigate leg injuries. Now the TRL-PLI and Flex-PLI have developed, and both have their pros and cons. In this study it is to modify existing lower legform impactor model, and the new model is still with high biofidelity, inexpensive and easy to manufacture and assemble. The new model can then be made physically and applied to relevant tests and development of pedestrian passive safety system.
    Constructing biofidelic lower legform impactor model is the foundation of designing pedestrian protection equipments of automobiles. In order to ensure the biofidelity of new legform impactor model, it is needed to conduct certification tests. Setup and biofidelic corridor of certification tests are based on PMHS tests. This study constructs the finite element model of human-like legform impactor model and makes use of LS-DYNA to perform the same tests as PMHS to evaluate its biofidelity. CVR value is the standard used to assess whether model is biofidelic. Certification tests consist of component and assembly tests. Component tests include 3-point leg bending tests and 4-point knee joint bending tests, and assembly tests comprise shearing and bending tests, all above in lateral direction.
    After finishing all the certification tests, testing results are analyzed and compared with those of two existing legform impactors. One legform to bumper test is conducted as a case of application.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XII 第一章 緒論 1 1.1 前言 1 1.2 論文架構 4 第二章 研究背景 6 2.1 人體下肢介紹 6 2.1.1 大腿構造 6 2.1.2 小腿構造 10 2.1.3 膝關節構造 11 2.2 行人碰撞傷害 16 2.2.1 行人碰撞過程 16 2.2.2 行人碰撞傷害資料統計 17 2.2.3 行人碰撞下肢傷害資料統計與受傷機制 22 2.2.3.1 行人碰撞下肢傷害資料統計 22 2.2.3.2 行人碰撞下肢傷害的機制 25 2.3 行人碰撞模擬之方法 27 2.3.1 大體測試 27 2.3.2 碰撞人偶測試 29 2.3.3 次系統測試 31 2.4 次系統碰撞測試程序與規範 32 2.4.1 各國汽車安全法規(Safety Regulation) 32 2.4.2 EEVC次系統測試程序與規範 33 2.4.3撓性下肢衝擊器測試程序與規範 40 2.5 彈簧阻尼系統配置模型 45 第三章 大體實驗規範與下肢衝擊器電腦模型的建立 47 3.1 下肢衝擊器的設計 47 3.1.1 現行兩種下肢衝擊器實體和前人蕭的設計優缺點比較 47 3.1.2 本研究下肢衝擊器的設計重點 53 3.2 大體實驗規範 55 3.2.1 小腿三點側向彎曲測試方法與驗證區間 55 3.2.2膝關節四點側向彎曲測試方法與驗證區間 58 3.2.3整體下肢撞擊測試方法與驗證區間 60 3.2.4 評定模型生物擬真性的方法 63 3.3 下肢衝擊器的設計流程與模型建立 64 3.3.1 下肢衝擊器的設計流程 64 3.3.2 下肢衝擊器模型的建立 65 第四章 下肢衝擊器模型的生物擬真性驗證 73 4.1 小腿模型的三點側向彎曲測試 73 4.2 膝關節模型的四點側向彎曲測試 79 4.3 整體下肢衝擊器模型的撞擊測試 85 4.3.1 彎曲測試 85 4.3.2 剪切測試 93 4.4 本研究與現行兩種下肢衝擊器實體的行為反應比較和分析 99 4.4.1 本研究與Flex-PLI的驗證結果比較 99 4.4.2 本研究與TRL-PLI驗證結果的比較 101 4.5 小腿骨骼是否為可變形體之模擬結果差異 106 4.6 下肢衝擊器對保險桿碰撞模擬及分析 109 4.6.1 保險桿模型 109 4.6.2 模擬設定與結果討論 110 4.7 小結 115 第五章 結論與建議 116 5.1 結論 116 5.2 建議與未來發展 117 參考文獻 119 附錄A 126 附錄B 131 自述 134

    Alexander, B., Markus, E., and Hans-Thomas, E., “Estimation of Benefits Resulting from Impactor-Testing for Pedestrian Protection,” 18th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 142, 2003.
    Automotive Research & Testing Center (ARTC), 車輛研測資訊2005-01, pp. 43-44, 2005.
    Been, B., Burleigh, M., Konosu, A., Issiki, T., Takahashi, Y., and Suzuki, H., “Development of a Biofidelic Flexible Pedestrian Legform Impactor Type GTR Prototype Part 2: Technical Details,” 21th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 146, 2009.
    Bose, D., Bhalla, K., Rooij, L., Millington, S., Studley, A., and Crandall, J., “Response of the Knee Joint to the Pedestrian Impact Loading Environment,” Society of Automotive Engineers , Paper No. 2004-01-1608, 2004.
    Chidester, A. and Isenberg, R., “Final Report-The Pedestrian Crash Data Study,” 17th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 248, 2001.
    Crandall, J., Bhalla, K., and Madeley, N., “Designing Road Vehicles for Pedestrian Protection,” British Medical Journal, Vol. 324, pp. 1145-1148, 2002.
    Croop, B. and Lobo, H., “Selecting Material Models for the Simulation of Foams in LS-DYNA,” 7th European LS-DYNA Conference, 2009.
    Cuerden, R., Cookson, R., Massie, P., and Edwards, M., “A Review of the European 40% Offset Frontal Impact Test Configuration,” 20th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 07-0318, 2007.
    EEVC, “EEVC Working Group 17 Report- Improved Test Methods to Evaluate Pedestrian Protection Afforded by Passenger Cars,” European Enhanced Vehicle-Safety Committee, 1998.
    Ford, http://www.wired.com/autopia/2010/08/how-a-cadaver-made-your-car-safer/, 2010 (2011/02/23 assessed).
    Gennarelli, T. and Wodzin, E., “AIS 2005: A contemporary injury scale,” International Journal of the Care of the Injured (Injury), Vol. 37, pp. 1083-1091, 2006.
    Hayashi, S., Awano, M., and Nishimura, I., “Development of a Flex-PLI LS-DYNA Model” 7th European LS-DYNA Conference, 2009.
    Honda, “Honda Reveals Revolutionary Pedestrian Dummy,” http://www.tynan.com.au/news/honda/honda-reveals-revolutionary-pedestrian-dummy.php, 2008 (2011/03/03 assessed).
    Huang, Z-M., “Ultimate Strength of a Composite Cylinder Subjected to Three-Point Bending: Correlation of Beam Theory with Experiment,” Composite Structure, Vol. 63, pp. 439-445, 2004.
    Huang, T-J., Wu, J-T., Hsiao, C-Y., Wang, M-S., and Lee, K-C., “Design of a Bumper System for Pedestrian Lower Leg Protection Using the Taguchi Method,” Journal of Automobile Engineering, Vol. 225, Part D, Article No. 410125, 2011.
    Ishikawa, H., Kajzer, J., and Schroeder G., “Computer Simulation of Impact Response of the Human Body in Car-Pedestrian Accidents,” 37th Stapp Car Crash Conference, Society of Automotive Engineers, Paper No. 933129, 1993.
    Ivarsson, J., Lessley, D., Kerrigan,J., Bhalla, K., Bose, D., Crandall, J., and Kent, R., “Dynamic Response Corridors and Injury Thresholds of the Pedestrian Lower Extremities,” 2004 International IRCOBI Conference on the Biomechanics of Impact, pp. 179-191, 2004.
    JAMA, “Injury Criteria for Flex-GTR MCL and Tibia,” Flex-PLI Technical Evaluation Group Technical Report, No. TEG-097.
    JAMA, “Injury Threshold for the Flex-PLI Medial Collateral Ligament (MCL)” Flex-PLI Technical Evaluation Group Technical Report, No. TEG-076.
    JAMA-JARI, “Flex-GT Full Calibration Test Procedures,” Flex-PLI Technical Evaluation Group Technical Report, No. TEG-047, 2007.
    Kajzer, J., Cavallero, C., Bonnoit, J., Morjane, A., and Ghanouchi, S., “Response of the Knee Joint in Lateral Impact-Effect of Bending Loads,” 1993 International IRCOBI Conference on the Biomechanics of Impact, pp. 105-116, 1993.
    Kajzer, J., Cavallero, C., Ghanouchi, S., Bonnoit, J., and Ghorbel, A., “Response of the Knee Joint in Lateral Impact-Effect of Shearing Loads,” 1991 International IRCOBI Conference on the Biomechanics of Impact, pp. 293-304, 1991.
    Kajzer, J., Schroeder, G., Ishikawa, H., and Matsui, Y., “Shearing and Bending Effects at the Knee Joint at High Speed Lateral Loading,” 41th Stapp Car Crash Conference, Paper No. 973326, 1997.
    Kalliske, I. and Friesen, F., “Improvements to Pedestrian Pretection as Exemplified on a Standard-sized Car,” 17th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 283, 2001.
    Kerrigan, J., Bhalla, K., Madeley, N., Funk, J., Bose, D., and Crandall, J., “Experiment for Establishing Pedestrian-Impact Lower Limb Injury Criteria,” Society of Automotive Engineers, Paper No. 2003-01-0895, 2003.
    Kerrigan, J., Drinkwater, D., Kam, C., Murphy, D., Ivarsson, B., Crandall, J., and Patrie, J., “Tolerance of the Human Leg and Thigh in Dynamic Latero-medial Bending,” International Journal of Crashworthiness , Vol. 9, No. 6, pp. 607-623, 2004.
    Konosu, A., “Information on the Flexible Pedestrian Legform Impactor GT ALPHA,” Flex-PLI Technical Evaluation Group Technical Report, No. TEG-022, 2006.
    Konosu, A., Ishikawa, H., and Tanahashi, M., “Reconsideration of Injury Criteria for Pedestrian Subsystem Legform Test–Problems of Rigid Legform Impactor,” Society of Automotive Engineers, Paper No. 2001-06-0206, 2001.
    Konosu, A. and Tanahashi, M., “Development of a Biofidelic Pedestrian Legform Impactor –Introduction of JAMA-JARI Legform Impactor Ver. 2002,” 18th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 378, 2003.
    Kuehnel, A. and Appel, H., “First Step to a Pedestrian Safety Car,” 22th Stapp Car Crash Conference, Paper No. 780901, 1978.
    Lawrence, G. and Hardy, B., “Pedestrian Safety Testing Using the EEVC Pedestrian Impactors,” 16th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 98-S10-O-03, 1998.
    Lobo, H., “Methodology for Selection of Material Models for Plastics Impact Simulation,” International LS-DYNA Conference, 2006.
    Lobo, H. and Croop, B., “Selecting Material Models for the Simulation of Foams in LS-DYNA,” 7th European LS-DYNA Conference, 2009.
    Livermore Software Technology Corporation (LSTC), “LS-DYNA Keyword User’s Manual Volume I,” 2007.
    LS-DYNA Support, “Energy Data,” http://www.dynasupport.com/tutorial/ls-dyna-users-guide/energy-data/?searchterm=energy%20data ( 2010/10/13 assessed).
    Maeno, T. and Hasegawa, J., “Development of a Finite Element of the Total Human Model for Safety (THUMS) and Application to Car-Pedestrian Impacts,” 17th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 494, 2001.
    Mallory, A. and Stammen, J., “Lower Extremity Pedestrian Injury in the U.S.: A Summary of PCDS Data,” NHTSA Vehicle Research and Test Center, 2006.
    Mallory, A. and Stammen, J., “Performance of Vehicle Bumper Systems with the EEVC/TRL Pedestrian Lower Legform,” 21th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 318, 2009.
    Mallory, A., Stammen, J., and Legault, F., “Component Leg Testing of Vehicle Front Structures,” 19th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 194, 2005.
    Matsui, Y., “Biofidelity of TRL Legform Impactor and Injury Tolerance of the Human Leg in Lateral Impact,” Society of Automotive Engineers, Paper No. 2001-22-0023, 2001.
    Matsui, Y., Ishikawa, H., Sasaki, A., Kajzer, J., and Schroeder, G., “Impact Response and Biofidelity of Pedestrian Legform Impactors,” 1999 International IRCOBI Conference on the Biomechanics of Impact, pp. 343-354, 1999.
    Matsui, Y., Takagi, S., Tanaka, Y., Hosokawa, N., Itoh, F., Nakasato, H., Watanabe, N., and Yonezawa, N., “Characteristics of the TRL Pedestrian Legform and the Flexible Pedestrian Legform Impactors in Car-front Impact Tests,” 21th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 206, 2009.
    Medri, M., Zhou, Q., DiMasi, F., and Bandak, F., “Head-neck Finite Element Model of the Crash Test Dummy THOR,” International Journal of Crashworthiness, Vol. 9, No. 2, pp. 175-186, 2004.
    Miyazaki, H., Kitagawa, Y., Yasuki, T., Kuwahara, M., and Matsuoka, M., “Development of Flexible Pedestrian Legform Impactor FE Model and Comparative Study with Leg Behavior of Human FE Model THUMS,” 21th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 112, 2009.
    Mizuno, Y., “IHRA– Summary of IHRA Pedestrian Safety Working Group Activities ,” 18th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 580, 2003.
    Mizuno, Y. and Ishikawa, H., “Summary of IHRA Pedestrian Safety WG Activities–Proposed Test Methods to Evaluate Pedestrian Protection Afforded by Passenger Cars,” Society of Automotive Engineers, Paper No. 2001-06-0136, 2001.
    Morgan, R., Marcus, J., and Eppinger, R., “Correlation of Side Impact Dummy/Cadaver Tests,” 25th Stapp Car Crash Conference, Paper No. 811008, 1981.
    M ller, M., Allg wer, M., Schneider, R., and Willenegger, H., “Manual of Internal Fixation– Techniques Recommended by the AO-ASIF Group,” Springer-Verlag, 1991.
    National Crash Analysis Center (NCAC), http://www.ncac.gwu.edu/vml/models.html, 2006 (2011/06/18 assessed).
    Neal-Sturgess, C. E., Carter, E., Hardy, R., Cuerden, R., Guerra, L., and Yang, J., “APROSYS European In-depth Pedestrian Database,” Innovations for Safety: Opportunities and Challenges, 2007.
    National Highway Traffic Safety Administration (NHTSA), “Traffic Safety Facts– 2009 Data,” 2009.
    Noorpoor, A., Abvabi, A., and Kiasat, M., “Development a New Model of EEVC/WG17 Lower Legform for Pedestrian Safety,” World Academy of Science, Engineering and Technology 41, 2008.
    Notsu, M., Nishimoto, T., Konosu, A., and Ishikawa, H., “J-MILT Research onto a Pedestrian Lower Extremity Protection– Evaluation Tests for Pedestrian Legform Impactors,” 19th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 193, 2005.
    Online Materials Information Resource (MatWeb), http://www.matweb.com/index.aspx (2010/06/24 assessed).
    Philippens, M., Cappon, H., Ratingen, M., and Wismans, J., “Comparison of the Rear Impact Biofidelity of BioRID II and RID2,” 46th Stapp Car Crash Conference, Paper No. 2002-22-0023, 2002.
    Takahashi, Y., Kikuchi, Y., Okamoto, M., Akiyama, A., Ivarsson, J., Bose, D., Subit, D., Shin, J., and Crandall, J., “Biofidelity Evaluation for the Knee and Leg of the POLAR Pedestrian Dummy,” 19th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 05-0280, 2005.
    Tiemann, N., Branz, W., and Schramm, D., “Predictive Pedestrian Protection– Sensor Requirements and Risk Assessment,” 21th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 226, 2009.
    Yang, J., “Review of Injury Biomechanics in Car-Pedestrian Collisions,” Crash Safety Division, Machine and Vehicle Systems, Chalmers University of Technology, 2002.
    鄭麗菁等人編譯,醫用解剖學,合記圖書出版社,台北,台灣,2008。
    蕭靖宜,行人下肢保護吸能性汽車保險桿分析與設計,國立成功大學機 械工程研究所碩士論文,2010。

    下載圖示 校內:2014-08-31公開
    校外:2016-08-31公開
    QR CODE