| 研究生: |
吳孟穎 Wu, Meng-Ying |
|---|---|
| 論文名稱: |
反應性濺鍍高C軸取向氮化鈧鋁鑽石薄膜之特性與壓電性質研究 Characterization and Piezoelectric Properties of Reactively Sputtered Highly C-axis (Sc, Al)N Thin Films on Diamond Structure |
| 指導教授: |
黃肇瑞
Huang, Jow-Lay |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 氮化鋁 、氮化鈧 、鑽石 、快速升溫退火 |
| 外文關鍵詞: | AlN, ScN, Diamond, Rapid Thermal Annealing |
| 相關次數: | 點閱:97 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Wurtzite結構氮化鋁薄膜之結晶性與壓電性質已被廣泛討論及發表,其優點為居禮溫度極高,可在超過1000oC下操作仍保有壓電性,但缺點為壓電係數過低。在氮化鋁薄膜內摻雜鈧後,由於結晶結構改變,利於誘發極化,使得壓電係數增加。
本實驗利用雙靶共鍍的方式濺鍍氮化鈧鋁薄膜於鑽石基板上,找出具最佳C軸取向的製程參數,以有效提升壓電係數值。而鑽石基板波速高(12000m/s)且散熱性佳,在其表面鍍上一層壓電薄膜後適合應用在高頻表面聲波元件。實驗結果顯示,隨著鈧含量增加,氮化鈧鋁薄膜的d33值會增加,至12 at.% Sc時達到一最大值6.55 pC/N,是純氮化鋁的四倍,這是因為合金薄膜達到一固溶限,並產生相轉變造成壓電性質產生變化。
一般而言,C軸取向結晶性愈好的結構,其壓電性質愈好。快速升溫退火可達到使晶粒成長、消除缺陷以有效改善薄膜結晶性,進而提升薄膜的壓電性質。本實驗做了一系列試驗,發現退火溫度、通入氮氣流量均會影響薄膜的C軸取向結晶性。研究結果顯示,在真空條件下退火,可在較低退火溫度下得到高壓電係數值24 pC/N。
從本實驗可歸納出較低溫的製程參數達到有效提升氮化鈧鋁鑽石薄膜之壓電性質。
Wurtzite Aluminum Nitride thin films have been widely studied and published recently. Because Aluminum Nitride has the highest Curie temperature, it can be used above 1000oC with its piezoelectricity. But, the piezoelectric coefficient d33 of AlN is too low. In this research, we demonstrated the viability of oriented AlN layer doped with Scandium to enhance its piezoelectricity. Wurtzite (Sc, Al) N thin films were deposited on a diamond structure by a co-sputtering system. The results show that the piezoelectricity was strongly depended on the c-axis orientation of samples. Besides, the piezoelectric coefficient would be enhanced obviously after doping Scandium element into thin films. The d33 value increased with increasing Scandium concentration up to the solution limit of Scandium in Aluminum. We found that the maximum of piezoelectric coefficient of (Sc, Al)N thin film is 6.55 pC/N at 12 at.% Sc, about four times larger than pure AlN layer.
Because the piezoelectric coefficient is strongly related to the c-axis of AlN, the preferred orientation of the thin films needs to be enhanced. Since the crystal quality of thin films could be improved by annealing, rapid thermal annealing process was taken to improve the crystallinity in our experiment. The experimental results show that both annealing temperature and the pressure of nitrogen affect the crystallinity of (Sc, Al)N thin films.
From our research, we conclude a preliminary low-temperature experimental process to enhance the piezoelectricity of (Sc, Al)N thin film up to 24 pC/N effectively, which could be expected to boost the properties of surface acoustic wave filter devices.
[1] Shujun Zhang, Ru Xia, Laurent Lebrun, Dean Anderson, Thomas R. Shrout, “Piezoelectric materials for high power, high temperature applications”, Mater. Lett. 59 3471 (2005).
[2] Shujun Zhang, Yiting Fei, Bruce H. T. Chai, Eric Frantz, David W. Snyder, Xiaoning Jiang, Thomas R. Shrout, “Characterization of piezoelectric single crystal YCa4O(BO3)3 for high temperature applications” Appl. Phys. Lett. 92 202905 (2008).
[3] Shujun Zhanga, Laurent Lebrun, Clive A. Randall, Thomas R. Shrout, “Growth and electrical properties of (Mn,F) co-doped 0.92Pb(Zn1/3Nb2/3)O3-0.08PbTiO3 single crystal” J. Cryst. Growth 267 204 (2004).
[4] Erik Ansorge, Stefan Schimpf , Soeren Hirsch, Jan Sauerwald, Holger Fritze, Bertram Schmidt, “Evaluation of langasite (La3Ga5SiO14) as a material for high temperature Microsystems” Sensor. Actuat. A-phys. 130 393 (2006).
[5] Yasuyoshi Saito, Hisaaki Takao, Toshihiko Tani, Tatsuhiko Nonoyama, Kazumasa Takatori, Takahiko Homma, Toshiatsu Nagaya, Masaya Nakamura, “Lead-free piezoceramics” Nature 432 84 (2004).
[6] Morito Akiyama, Toshihiro Kamohara, Kazuhiko Kano, Akihiko Teshigahara, Yukihiro Takeuchi, and Nobuaki Kawahara, “Enhancement of Piezoelectric Response in Scandium Aluminum Nitride Alloy Thin Films Prepared by Dual Reactive Cosputtering” Adv. Mater. 21 593 (2009).
[7] Noboru Takeuchi, “First-principles calculations of the ground-state properties and stability of ScN” Phys. Rev. B 65 045204 (2002).
[8] Andrea Dal Corso, Michel Posternak, Raffaele Resta, Alfonso Baldereschi, “Ab initio study of piezoelectricity and spontaneous polarization in ZnO” Phys. Rev. B 50 10715 (1994).
[9] Rajan S. Naik, Joseph J. Lutsky, Rafael Reif, Charles G. Sodini, Andy Becker, Linus Fetter, Harold Huggins, Ronald Miller, John Pastalan, Gee Rittenhouse, Yiu-Huen Wong, “Measurements of the Bulk, C-Axis Electromechanical Coupling Constant as a Function of AlN Film Quality” IEEE Trans. Ultrason. Ferroelec. Freq. Control 47 292 (2000).
[10] H.P. Loebl, M. Klee, C. Metzmacher, W. Brand, R. Milsom, P. Lok, “Piezoelectric thin AlN films for bulk acoustic wave (BAW) resonators” Mater. Chem. Phys. 79 143 (2003).
[11] N. Farrer, L. Bellaiche, “Properties of hexagonal ScN versus wurtzite GaN and InN” Phys. Rev. B 66 201203 (R) (2002).
[12] L. Vergara, J. Olivares, E. Iborra, M. Clement, A. Sanz-Hervás, J. Sangrador, “Effect of rapid thermal annealing on the crystal quality and the piezoelectric response of polycrystalline AlN films” Thin Solid Films 515 1814 (2006).
[13] Ursula Mazur, Ann Cuneo Cleary, “Infrared and Tunneling Spectroscopy Study of AlN Films Prepared by Ion-Beam Deposition” J. Phys. Chem. 94 189 (1990).
[14] S. M. Rossnagel, "Handbook of Plasma Processing Technology", Noyes Publications, Park Ridge, New Jersey, USA (1989).
[15] Brian Chapman, "Glow Discharge Process", John Wiley and Sons, New York, USA (1980).
[16] Eliseo Ruiz, Santiago Alvarez, Pere Alemany, “Electronic structure and properties of AlN” Phys. Rev. B 49 7115 (1994).
[17] 嚴豐明,"高熱傳導率氮化鋁基版材料之簡介",材料與社會71 45(1994).
[18] Sean Wu, Yeong-Chin Chen, Yee Shin Chang “ Characterization of AlN Films on Y-128o LiNbO3 by Surface Acoustic Wave Measurement” Jpn. J. Appl. Phys. 41 4605 (2002).
[19] Morito Akiyama, Chao-Nan Xu, Kazuhiro Nonaka, Kazuhisa Shobu, Tadahiko Watanabe, “Statistical approach for optimizing sputtering conditions of highly oriented aluminum nitride thin films” Thin Solid Films 315 62 (1998).
[20] W X Cai, L Kang, P H Wu, S Z Yang, Z M Ji, “Fabrication of AlN thin films on different substrates at ambient temperature” Supercond. Sci. Tech. 15 1781 (2002).
[21] R. S. Naik, R. Reif, J. J. Lutsky, C. G. Sodini, “Low-Temperature Deposition of Highly Textured Aluminum Nitride by Direct Current Magnetron Sputtering for Applications in Thin-Film Resonators” J. Electrochem. Soc. 146 (2) 691 (1999).
[22] W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, S. L. Gilbert, “Epitaxially grown AIN and its optical band gap” J. Appl. Phys. 44 292 (1973).
[23] Mizuho Morita, Kazuo Tsubouchi, Nobuo Mikoshiba, “Optical Absorption and Cathodoluminescence of Epitaxial Aluminum Nitride Films” Jpn. J. Appl. Phys. 21 1102 (1982).
[24] S. Yoshida, S. Misawa, Y. Fujii, S. Takada, H. Hayakawa, S. Gonda, A. Itoh, “Reactive molecular beam epitaxy of aluminum nitride” J. Vac. Sci. Technol. 16 (4) 990 (1979).
[25] J.S. Cherng, D.S. Chang, “Effects of pulse parameters on the pulsed-DC reactive sputtering of AlN thin films” Vacuum 84 653 (2010).
[26] M. Ishiharaa,U, S.J. Lia, H. Yumotoa, K. Akashib, Y. Idec, “Control of preferential orientation of AlN films prepared by the reactive sputtering method” Thin Solid Films 316 152 (1998).
[27] C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback, H. Shen, “Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (011 2) sapphire by metalorganic chemical vapor deposition” J. Appl. Phys. 85 2595 (1999).
[28] H.Nakahata, A.Hachigo, S.Shikata, N.Fujimori, “High frequency surface acoustic wave filter using ZnO/diamond/Si structure” Ultrasonics Symposium 377 (1992).
[29] Bong-Chul Ko, Soon-Bae Jun, Chang-Woo Nam, Kyu-Chul Lee, “Properties of AlN thin film deposited by reactive RF magnetron sputter for saw device application” Proceedings of the 7th Korea-Russia International Symposium. KORUS (2003).
[30] Yasar Gurbuz, Onur Esame, Ibrahim Tekin, Weng P. Kang, Jimmy L. Davidson, “Diamond semiconductor technology for RF device applications” Solid-State Electron. 49 1055 (2005).
[31] Colm M. Flannery, Michael D. Whitfield, Richard B. Jackman, “Surface Acoustic Wave Properties of Freestanding Diamond Films” IEEE Trans Ultrason. Ferroelec. Freq. Control 51 368 (2004).
[32] Kazuhiko Yama nouchi, Toshiyasu Meguro, Yasuo Wagatsuma, Hiroyuki Odagawa, Keiichi Yamamoto, “Nanometer Electrode Fabrication Technology Using Anodic Oxidation Resist and Application to Unidirectional Surface Acoustic Wave Transducers” Jpn. J. Appl. Phys. 33 3018 (1994).
[33] C. Deger, E. Born, H. Angerer, O. Ambacher, M. Stutzmann, J. Hornsteiner, E. Riha, G. Fischerauer “Sound velocity of AlxGa1-xN thin films obtained by surface acoustic-wave Measurements” Appl. Phys. Lett. 72 2400 (1998).
[34] Hiroshi Okano, Naoki Tanaka, Yusuke Takahashi, Toshiharu Tanaka, Kenichi Shibata, Shoichi Nakano, “Preparation of aluminum nitride thin films by reactive sputtering and their applications to GHz-band surface acoustic wave devices” Appl. Phys. Lett. 64 (Z) 166 (1994).
[35] M. Ishiharaa, T. Nakamuraa, F. Kokaib, Y. Kogaa, “Preparation of AlN and LiNbO3 thin films on diamond substrates by sputtering method” Diam. Relat. Mater. 11 408 (2002).
[36] V. Mortet, O. Elmazria , M. Nesladek, J. D’Haen, G. Vanhoyland, M. Elhakiki, A. Tajani, E. Bustarret, E. Gheeraert, M. D’Olieslaeger, P. Alnot, “Study of aluminium nitride/freestanding diamond surface acoustic waves filters” Diam. Relat. Mater. 12 723 (2003).
[37] D. Liufu, K. C. Kao, “Piezoelectric, dielectric, and interfacial properties of aluminum nitride films” J. Vac. Sci. Technol. A 16(4) 2360 (1998).
[38] Chien-Chuan Cheng, Ying-Chung Chen, Horng-Jwu Wang, Wen-Rong Chen, “Morphology and Structure of Aluminum Nitride Thin Films on Glass Substrstes” Jpn. J. Appl. Phys. 35 1880 (1996).
[39] K. S. Stevens, M. Kinniburgh, A. F. Schwartzman, A. Ohtani, R. Beresford, “Demonstration of a silicon field-effect transistor using AlN as the gate Dielectric” Appl. Phys. Lett. 66 (23) 3179 (1995).
[40] Carina Höglund, Jens Birch, Björn Alling, Javier Bareño, Zsolt Czigány, Per O. Å. Persson, Gunilla Wingqvist, Agne Zukauskaite, Lars Hultman1, “Wurtzite structure Sc1−xAlxN solid solution films grown by reactive magnetron sputter epitaxy: Structural characterization and first-principles calculations” J. Appl. Phys. 107 123515 (2010).
[41] Walter Lengauer, “Investigations in the Scandium-Nitrogen System” J. Solid State Chem. 76 412 (1988).
[42] D. Gall, I. Petrov, N. Hellgren, L. Hultman, J. E. Sundgren, J. E. Greene, “Growth of poly- and single-crystal ScN on MgO (001): Role of low-energy N2+ irradiation in determining texture, microstructure evolution, and mechanical properties” J. Appl. Phys. 84 6034 (1998).
[43] Walter R. L. Lambrecht, “Electronic structure and optical spectra of the semimetal ScAs and of the indirect-band-gap semiconductors ScN and GdN” Phys. Rev. B 62 13538 (2000).
[44] D. Gall, M. Sta¨dele, K. Ja¨rrendahl, I. Petrov, P. Desjardins, R. T. Haasch, T.-Y. Lee, J. E. Greene, “Electronic structure of ScN determined using optical spectroscopy, photoemission, and ab initio calculations” Phys. Rev. B 63 125119 (2001).
[45] C. Stampfl, W. Mannstadt, R. Asahi, A. J. Freeman, “Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations” Phys. Rev. B 63 155106 (2001).
[46] Hamad A. Al-Brithen, Arthur R. Smith, Daniel Gall, “Surface and bulk electronic structure of ScN(001) investigated by scanning tunneling microscopy/spectroscopy and optical absorption spectroscopy” Phys. Rev. B 70 045303 (2004).
[47] Thaddeus B. Massalski, “Binary Alloy Phase Diagrams” American Society for Metals, Metals park, Ohio 1 44073 (1986).
[48] Morito Akiyama, Kazuhiko Kano, Akihiko Teshigahara, “Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films” Appl. Phys. Lett. 95 162107 (2009).
[49] Ferenc Tasna´di, Bjo¨rn Alling, Carina Ho¨glund, Gunilla Wingqvist, Jens Birch, Lars Hultman, Igor A. Abrikosov, “Origin of the Anomalous Piezoelectric Response in Wurtzite ScxAl1-xN Alloys” Phys. Rev. Lett. 104 137601 (2010).
[50] V. Ranjan, S. Bin-Omran, David Sichuga, Robert Sean Nichols, L. Bellaiche, “Properties of GaN/ScN and InN/ScN superlattices from first principles” Phys. Rev. B 72 085315 (2005).
[51] A. Alsaada, A. Ahmad, “Piezoelectricity of ordered (ScxGa1−xN) alloys from first principles” Eur. Phys. J. B 54 151 (2006).
[52] R. C. Turner, P.A. Fuierer, R.E. Newnham, T.R. Shrout, “Materials for High Temperature Acoustic and Vibration Sensors: A Review” Appl. Acoust. 41 299 (1994).
[53] 余建邦, 國立中山大學物理研究所碩士論文, “Process and analysis of nano wire in InGaAs/AlInAs by focus ion beam” (1996).
[54] J.P. Kar, G. Bose, S. Tuli, “Influence of rapid thermal annealing on morphological and electrical properties of RF sputtered AlN films” Mat. Sci. Semicond. Proc. 8 646 (2005).
[55] G. Beshkov, D. Spasov, E. Manolov, N. Nedev, S. Georgiev, Ts. Ivanov, K. Grigorov, “Properties of AlNx Nanofilms Prepared by Rapid Thermal Annealing” Bulg. J. Phys. 35 129 (2008).
[56] 許如宏, 林鶴南, “原子力顯微術於奈米加工之應用”物理雙月刊(廿五卷五期)620 (2003).
[57] J.H. Song, J.L. Huang, H.H. Lu, J.C. Sung, “Investigation of wurtzite (B,Al)N films prepared on polycrystalline diamond” Thin Solid Films 516 223 (2007).
[58] Jen-Hao Song, Sheng-Chang Wang, James C. Sung, Jow-Lay Huang, Ding-Fwu Lii, “Characterization of reactively sputtered c-axis orientation (Al, B)N films on diamond” Thin Solid Films 517 4753 (2009).
[59] Q.S. Paduanoa, D.W. Weyburnea, J. Jasinskib, Z. Liliental-Weber, “Effect of initial process conditions on the structural properties of AlN films” J. Cryst. Growth 261 259 (2004).
[60] Costel Constantin, Hamad Al-Brithen, Muhammad B. Haider, David Ingram, Arthur R. Smith, “ScGaN alloy growth by molecular beam epitaxy: Evidence for a metastable layered hexagonal phase” Phys. Rev. B 70 193309 (2004).
[61] A. Sanz-Hervás, M. Clement, E. Iborra, L. Vergara, J. Olivares, J. Sangrador, “Degradation of the piezoelectric response of sputtered c-axis AlN thin films with traces of non-(0002) x-ray diffraction peaks” Appl. Phys. Lett. 88 161915 (2006).
[62] J. Olivares, S. González-Castilla, M. Clement, A. Sanz-Hervás, L. Vergara, J. Sangrador, E. Iborra, “Combined assessment of piezoelectric AlN films using X-ray diffraction, infrared absorption and atomic force microscopy” Diam. Relat. Mater. 16 1421 (2007).
[63] V. K. Yang, M. Groenert, C. W. Leitz, A. J. Pitera, M. T. Currie, E. A. Fitzgerald, “Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates” J. Appl. Phys. 93 3859 (2003).
[64] B. Liu, J. Gao, K.M. Wu, C. Liu, “Preparation and rapid thermal annealing of AlN thin films grown by molecular beam epitaxy” Solid State Commun. 149 715 (2009).
[65] Sami Suihkonen, “Thermal Annealing of AlN Thin Films Fabricated by Plasma-Enhanced Atomic Layer Deposition for GaN Epitaxy” Aalto University School of Science and Technology (2010)
[66] J. P. Kar, S. Mukherjee, G. Bose, S. Tuli, J. M. Myoung, “Impact of post-deposition annealing on surface, bulk and interface properties of RF sputtered AlN films” Mater. Sci. Technol. 25 (8)1023 (2009).
[67] Kaustubh S. Gadre, T.L. Alford, “Crack formation in TiN films deposited on Pa-n due to large thermal mismatch” Thin Solid Films 394 125 (2001).
[68] Z. Y. Fan, G. Rong, N. Newman, David J. Smith, “Defect annihilation in AlN thin films by ultrahigh temperature processing” Appl. Phys. Lett. 76 1839 (2000).
[69] J.P. Kar, G. Bose, S. Tuli, “Effect of annealing on DC sputtered aluminum nitride films” Surf. Coat. Tech. 198 64 (2005).
[70] J. H. Harris, R. A. Youngman, R. G. Teller, “On the nature of the oxygen-related defect in aluminum nitride” J. Mater. Res. 5 (8) 1763 (1990).
[71] R. Farrell, V. R. Pagán, A. Kabulski, Sridhar Kuchibhatla, J.Harman, K. R. Kasarla, L. E. Rodak, P. Famouri, J. Hensel, D. Korakakis, “High Temperature Annealing Studies on the Piezoelectric Properties of Thin Aluminum Nitride Films” Mater. Res. Soc. Symp. Proc. 1052 (2008).
[72] Yasumasa Okada, Yozo Tokumaru, “Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K” J. Appl. Phys. 56 (2) 314(1984).
[73] W. M. Vim, R. J. Paff, “Thermal expansion of AlN, sapphire, and silicon” J. Appl. Phys. 45 1456 (1974).