| 研究生: |
黃俊凱 Huang, Chun-Kai |
|---|---|
| 論文名稱: |
以溫度波分析法量測奈米尺度之二氧化矽薄膜於溫度影響下之熱傳導係數 Measurement of Thermal Conductivity for Silicon Dioxide Nanofilms under the Influence of Temperature by Temperature Wave Analysis Method |
| 指導教授: |
溫昌達
Wen, Chang-Da |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 溫度波分析法 、微奈米尺度薄膜 、實驗量測 、熱傳導係數 |
| 外文關鍵詞: | Temperature Wave Analysis Method, Nanofilms, Experimental, Thermal conductivity |
| 相關次數: | 點閱:64 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究以溫度波分析法理論為基礎,建立一套簡便、成本較低的奈米尺度下薄膜熱傳導係數實驗量測方法,本文將實驗架構分為電源供應設備、量測設備與熱源供應設備,待測薄膜為使用物理氣相沉積中的蒸鍍方法鍍製三種厚度(45 nm、92 nm、190 nm)的二氧化矽薄膜。
利用此量測實驗方法,本文研究了在常溫下三種不同厚度的二氧化矽薄膜其熱傳導係數隨厚度改變的影響,三種不同厚度的熱傳導係數量測結果分別為,0.61 (W/mK)、0.71 (W/mK)、0.84 (W/mK),在溫度振盪頻率上選擇最適用的頻率以利於研究熱傳導係數隨溫度改變的影響,同時將量測到的數據與文獻比較,在驗證實驗量測方法準確後本文對600 nm厚度之二氧化矽薄膜進行研究分析,量測結果為控制溫度為300 K、溫度振盪頻率選用在0.025 Hz熱傳導係數為0.92 (W/mK),並且找出二氧化矽薄膜其載子傳輸性質在400 nm以上為擴散型傳輸而在400 nm以下為波動型(彈道型)傳輸,溫度影響部分控制溫度範圍在290 K~350 K其熱傳導係數也隨著溫度上升而增加,在研究中也觀察到透過不同沉積方法鍍製的薄膜熱傳導係數也會有所不同,其熱傳導係數由高到低為TOD > PECVD > E-beam。
The research is based on the Temperature Wave Analysis method to establish an experimental method for measuring the thermal conductivity of Nanofilms. The experimental structure is divided into power supply equipment, measurement equipment, and heat source equipment. The film to be tested with three thicknesses (45 nm, 92 nm, 190 nm) of silicon dioxide film using the E-beam method in the physical vapor method. The influence of the different film thicknesses on thermal conductivity is investigated. The results of the thermal conductivity of the three different thicknesses are 0.61 (W/mK), 0.71 (W/mK), and 0.84 (W/mK). The most suitable value for the temperature oscillation frequency is found that the thermal conductivity dependent on different temperatures.
After verifying the accuracy of the method, this study conducts research and analysis on a 600 nm nanofilm. At 300K, the temperature oscillation frequency is 0.025 Hz. The thermal conductivity is 0.92 (W/mK). The transport properties of the dioxide film above 400 nm are wave type (ballistic) transmission. The thermal conductivity in 290 K ~ 300 K also increases with the raised temperature.
In the research, it has also been observed that the thermal conductivity of films deposited by different deposition methods will also be different, and the thermal conductivity of films from high to low is TOD > PECVD > E-beam.
[1]J. C. Lambropoulos, M. R.Jolly, and C. A. Amsden, "Thermal conductivity of dielectric thin films," Journal of Applied Physics, vol. 66, no. 9, pp. 4230-4242, 1989.
[2]D. G. Cahill, K. E. Goodson, and A. Majumdar, "Thermometry and thermal transport in micro/nanoscale solid-state devices and structures, J Heat Trans-T Asme, vol. 124, no. 2, pp. 223-241, 2002.
[3]D. G. Cahill, "Thermal conductivity measurement from 30 to 750 K: the 3ω method," Review of Scientific Instruments, vol. 61, no. 2, pp. 802-808, 1990.
[4]G. Paul, M. Chopkar, I. Manna, and P. K. Das, "Techniques for measuring the thermal conductivity of nanofluids: A review, Renew Sust Energ Rev, vol. 14, no. 7, pp. 1913-1924, 2010.
[5]O. Pessoa, C. L. Cesar, N. A. Patel, H. Vargas, C. C. Ghizoni, and L. C. M. Miranda, "Two‐beam photoacoustic phase measurement of the thermal diffusivity of solids," Journal of Applied Physics, vol. 59, no. 4, pp. 1316-1318, 1986.
[6]J. Yang, J. Zhang, H. Zhang, and Y. Zhu, "Thermal conductivity measurement of thin films by a dc method," Rev Sci Instrum, vol. 81, no. 11, p. 114902, 2010.
[7]X. W. Wang, H. P. Hu, and X. F. Xu, "Photo-acoustic measurement of thermal conductivity of thin films and bulk materials , J Heat Trans-T Asme, vol. 123, no. 1, pp. 138-144, 2001.
[8]T. Hashimoto, "Temperature Wave Analysis," SCIENTIFIC INSTRUMENT NEWS, vol. 9, 2017.
[9]T. Yagi, K. Tamano, Y. Sato, N. Taketoshi, T. Baba, and Y. Shigesato, "Analysis on thermal properties of tin doped indium oxide films by picosecond thermoreflectance measurement, J Vac Sci Technol A, vol. 23, no. 4, pp. 1180-1186, 2005.
[10]A. Salazar, A. Sánchez‐Lavega, and J. Fernández, "Thermal diffusivity measurements in solids by the ‘‘mirage’’ technique: Experimental results," Journal of Applied Physics, vol. 69, no. 3, pp. 1216-1223, 1991.
[11]E. J. a. E. Obermeier, "Thermal conductivity measurements on thin films based on micromechanical devices," J. Micromech. Microeng, vol. 6, pp. 118-121, 1996.
[12]B. L. Zink, B. Revaz, J. J. Cherry, and F. Hellman, "Measurement of thermal conductivity of thin films with a Si-N membrane-based microcalorimeter, Review of Scientific Instruments, vol. 76, no. 2, 2005.
[13]S. M. Lee and D. G. Cahill, "Heat transport in thin dielectric films, " Journal of Applied Physics, vol. 81, no. 6, pp. 2590-2595, 1997.
[14]F. Volklein and H. Baltes, "A Microstructure for Measurement of Thermal Conductivity of Polysilicon Thin Films," MICROELECTROMECHANICAL SYSTEMS, vol. 1, 1992.
[15]L. Lu, W. Yi, and D. L. Zhang, "3ω method for specific heat and thermal conductivity measurements," Review of Scientific Instruments, vol. 72, no. 7, pp. 2996-3003, 2001.
[16]方俊傑, "金屬氧化膜熱傳導係數量測之研究 " 逢甲大學, 2004.
[17]孫偉哲, "薄(厚)膜材料熱傳導係數量測與探討," 國立清華大學, 2010.
[18]王奕迪, "薄膜熱膨脹與熱擴散係數量測分析研究," 國立成功大學, 2013.
[19]M.Okuda and S.Ohkubo, "A novel method for measuring the thermal conductivity of submicrometre thick dielectric films," Thin Sol id Fi lms, pp. 176-181, 1992.
[20]F.R.Brotzen and P. J. L. a. D.P.Brady, "Thermal conductivity of thin film," Thin of Solid Films, vol. 207, pp. 197-201, 1992.
[21]M. I. F. K. E. Goodson, L. T. Su, and Dimitri A. Antoniadis, "Annealing-Temperature Dependence of the Thermal Conductivity of LPCVD Silicon-Dioxide Layers " IEEE ELECTRON DEVICE LETERS, vol. 14, 1993.
[22]O. W. Käding, H. Skurk, and K. E. Goodson, "Thermal conduction in metalized silicon‐dioxide layers on silicon," Applied Physics Letters, vol. 65, no. 13, pp. 1629-1631, 1994.
[23]A. Irace and P. M. Sarro, "Measurement of thermal conductivity and diffusivity of single and multilayer membranes," Sensors and Actuators A—Physical, vol. 76, pp. 323-328, 1999.
[24]T. Yamane, N. Nagai, S.-i. Katayama, and M. Todoki, "Measurement of thermal conductivity of silicon dioxide thin films using a 3ω method," Journal of Applied Physics, vol. 91, no. 12, 2002.
[25]M. G. Burzo, P. L. Komarov, and P. E. Raad, "Thermal transport properties of gold-covered thin-film silicon dioxide, Ieee Transactions on Components and Packaging Technologies, vol. 26, no. 1, pp. 80-88, 2003.
[26]李世平, "電漿化學氣相沉積技術成長超低應力之紫外光可透性氮化矽薄膜," 國立交通大學, 2010.
[27]李雅明, "固態電子學," 全華科技圖書股份有限公司, vol. 台北市, 2002.
[28]簡恆傑, "微奈米尺度薄膜之熱傳導量測方法研究開發," 國立清華大學, 2010.
[29]段占立, "纳米薄膜非平衡热导率的实验及理论研究," 青島科技大學, 2009.
[30]W. D. C. a. D.G.Rethwisch, "Materials science and engineering, " John wiley&sons NY, 2011.
[31]C. Kittel, "Introduct on to solid state physics, " John Wiley & Sons, Inc New York, 1996.
[32]G. L. Harris, "Properties of Silicon Carbide, " Institution of Engineering and Technology, vol. 8, no. 7, pp. 534-8, 1995.
[33]B. I. C. M. I. Flik, and K. E. Goodson, "Heat Transfer Regimes in Microstructures," J. Heat Transfer.
[34]蕭子綱, 張旭凱, 李嗣涔, 張之威, "矽鍺奈米線之熱導率相圖," 國立台灣大學,2012.
[35]Z.M.Zhang, "NANO/MICROSCALE HEAT TRANSFER," The McGraw-Hill Companies, 2007.
[36]J. M. Ziman, "Electrons and Phonons," Oxford University Press, 1960.
[37]傅子豪, "微電子65奈米世代後銅薄膜阻抗係數之探討," 國立交通大學, 2006.
[38]A.Majumdar, "Microscale heat conduction in dielectric thin films," 1993.
[39]F. X. Alvarez and D. Jou, "Memory and nonlocal effects in heat transport: From diffusive to ballistic regimes, Applied Physics Letters, vol. 90, no. 8, 2007.
[40]J. H. Seol, I. Jo, and A.L. Moore ., "Two-Dimensional Phonon Transport in Supported Graphene, Science, vol. 328, no. 5975, pp. 213-216, 2010.
[41]林祐全, "以物理氣相沉積法與硒化法製備 CIGS 太陽能電池元件研究," 國立交通大學, 2014.
[42]梁忠霖, "熱電晶片致冷效應之研究," 國立宜蘭大學, 2017.
[43]H. Zaoui, P. L. Palla, and S. Giordano ., "Thermal conductivity of deca-nanometric patterned Si membranes by multiscale simulations," International Journal of Heat and Mass Transfer, vol. 126, pp. 830-835, 2018.
[44]張祐銓, "溫度波分析法應用於二氧化矽薄膜熱傳導係數量測之實驗與數值研究," 國立成功大學, 2020.
校內:2026-01-01公開