簡易檢索 / 詳目顯示

研究生: 吳培瑜
Wu, Pei-Yu
論文名稱: 利用電漿增強式原子層沉積系統製備氧化鎵應用於紫外光光電晶體之研究
Investigation of Ga2O3 deposited using plasma-enhanced atomic layer deposition system and applied on ultraviolet phototransistors
指導教授: 李欣縈
Lee, Hsin-Ying
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 92
中文關鍵詞: 電漿增強式原子層沉積系統氧化鎵紫外光光電晶體
外文關鍵詞: Gallium oxide, plasma enhanced atomic layer deposition system (PE-ALD), metal-oxide-semiconductor field-effect solar-blind phototransistor (MOSFEPTs)
相關次數: 點閱:45下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I Abstract III 致謝 XII 目錄 XIV 表目錄 XVIII 圖目錄 XIX 第一章 序論 1 1.1 寬能隙半導體與氧化鎵的發展 1 1.2 電晶體與光感測器的發展與重要性 2 1.3 光電晶體的發展與研究動機 4 1.4 論文架構 5 第二章 基本理論與文獻回顧 6 2.1 薄膜基本特性 6 2.1.1 氧化鎵之薄膜特性 6 2.1.2 氧化鋁之薄膜特性 6 2.2 氧化鎵薄膜沉積 7 2.3 氧化鋁薄膜沉積 8 2.4 光電晶體之工作原理 9 2.5 光電晶體之元件特性 9 2.5.1 元件開關比 9 2.5.2 臨界電壓 10 2.5.3 薄膜光學能隙計算 11 2.5.4 光響應度 11 2.5.5 漏電流 14 2.5.6 金屬與半導體的接面特性 15 2.5.7 等效雜訊功率與檢測度 16 第三章 實驗機台與製程步驟 22 3.1 實驗藥劑和前驅物 22 3.2 元件製程機台 23 3.2.1 電漿增強式原子層沉積系統 23 3.2.2 電子束蒸鍍系統 24 3.2.3 光罩對準儀 24 3.2.4 石英爐管熱退火系統 25 3.2.5 快速熱退火系統 25 3.2.6 射頻磁控濺鍍系統 25 3.3 第一種結構氧化鎵光電晶體製作流程 26 3.4 第二種結構氧化鎵光電晶體製作流程 30 3.5 量測與分析儀器 32 3.5.1 光激發光頻譜儀 32 3.5.2 X光繞射分析儀 32 3.5.3 半導體參數分析系統 33 3.5.4 光電流特性量測系統 33 第四章 實驗結果與討論 43 4.1 自我侷限效應 43 4.2 薄膜光學特性分析 44 4.2.1 氧化鎵薄膜光學特性分析 44 4.2.2 氧化鋁薄膜光學特性分析 44 4.3 氧化鎵的的結晶特性分析 45 4.4 氧化鎵光激發光特性與缺陷態分析 45 4.5 汲、源極熱退火影響分析 46 4.6 結構一氧化鎵光電晶體 47 4.6.1 不同閘極氧化層厚度之結構一光電晶體閘極漏電流分析 47 4.6.2 閘極氧化層厚度50 nm之結構一光電晶體特性分析 48 4.6.3 閘極氧化層厚度70 nm之結構一光電晶體特性分析 48 4.6.4 閘極氧化層厚度100 nm之結構一光電晶體特性分析 49 4.6.5 不同閘極氧化層厚度之結構一光電晶體特性比較 49 4.7 結構二閘極氧化鎵光電晶體 50 4.7.1 閘極氧化層厚度50 nm之結構二光電晶體特性分析 50 4.7.2 閘極氧化層厚度70 nm之結構二光電晶體特性分析 51 4.7.3 閘極氧化層厚度100 nm之結構二光電晶體特性分析 51 4.7.4 不同閘極氧化層厚度之結構二光電晶體閘極漏電流分析 52 4.7.5 不同閘極氧化層厚度之結構二光電晶體特性比較 52 4.8 響應時間特性分析 53 第五章 結論與未來展望 77 參考文獻 79

    [1] X. C. Zhang, Y. Jin, K. Yang, and L. J. Schowalter, “Resonant nonlinear susceptibility near the GaAs band gap,” Phys. Rev. Lett., vol. 69, pp. 2303−2306, 1992.
    [2] C. F. Lin, C. W. Liu, M. J. Chen, M. H. Lee, and I. C. Lin, “Electroluminescence at Si band gap energy based on metal–oxide–silicon structures,” J. Appl. Phys., vol. 87, pp. 8793−8795, 2000.
    [3] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys., vol. 76, pp. 1363−1398, 1994.
    [4] H. Peelaers, and C. G. V. D. Walle, “Sub-band-gap absorption in Ga2O3,” Appl. Phys. Lett., vol. 111, pp. 182104-1−182104-5, 2017.
    [5] Y. Chen, H. Liang, X. Xia, R. Shen, Y. Liu, Y. Luo, and G. Du, “Effect of growth pressure on the characteristics of β-Ga2O3 films grown on GaAs (100) substrates by MOCVD method,” Appl. Surf. Sci., vol. 325, pp. 258−261, 2015.
    [6] W. Mi, J. Ma, Z. Li, C. N. Luan, and H. D. Xiao, “Characterization of Sn-doped β-Ga2O3 films deposited on MgO (100) substrate by MOCVD,” J. Mater. Sci. Mater. Electron., vol. 26, pp. 7889−7894, 2015.
    [7] F. Alema, B. Hertog, P. Mukhopadhyay, Y. Zhang, A. Mauze, A. Osinsky, W. V. Schoenfeld, J. S. Speck, and T. Vogt, “Solar blind Schottky photodiode based on an MOCVD-grown homoepitaxial β-Ga2O3 thin film,” APL Mater., vol. 7, pp. 022527-1−022527-6, 2019.
    [8] J. H. Kim, and P. H. Holloway, “Microstructural characterization of radio frequency magnetron sputter-deposited Ga2O3: Mn phosphor thin films,” J. Vac. Sci. Technol. A, vol. 20, pp. 928−933, 2002.
    [9] Z. Li, Z. An, Y. Xu, Y. Cheng, D. Chen, Q. Feng, S. Xu, J. Zhang, C. Zhang, and Y. Hao, “Improving the production of high-performance solar-blind β-Ga2O3 photodetectors by controlling the growth pressure,” J. Mater. Sci., vol. 54, pp. 10335−10345, 2019.
    [10] K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S.Yamakoshi, “MBE grown Ga2O3 and its power device applications,” J. Cryst. Growth, vol. 378, pp. 591−595, 2013.
    [11] Y. C. Chang, Y. J. Lee, Y. N. Chiu, T. D. Lin, S. Y. Wu, H. C. Chiu, J. Kwo, Y. H. Wang, and M. Hong, “MBE grown high k dielectrics Ga2O3(Gd2O3) on GaN,” J. Cryst. Growth, vol. 301−302, pp. 390−393, 2007.
    [12] A. S. Pratiyush, S. Krishnamoorthy, S. Kumar, Z. Xia, R. Muralidharan, S. Rajan, and D. N. Nath, “Demonstration of zero bias responsivity in MBE grown β-Ga2O3 lateral deep-UV photodetector,” Jpn. J. Appl. Phys., vol. 57, pp. 060313-1−060313-6, 2018.
    [13] F. K. Shan, G. X. Liu, W. J. Lee, G. H. Lee, I. S. Kim, and B. C. Shin, “Ga2O3 thin film deposited by atomic layer deposition with high plasma power,” Integr. Ferroelectr., vol. 80, pp. 197−206, 2006.
    [14] R. K. Ramachandran, J. Dendooven, J. Botterman, S. P. Sree, D. Poelman, J. A. Martens, H. Poelmand, and C. Detavernier, “Plasma enhanced atomic layer deposition of Ga2O3 thin films,” J. Mater. Chem. A, vol. 2, pp. 19232−19238, 2014.
    [15] S. H. Lee, S. B. Kim, Y. J. Moon, S. M. Kim, H. J. Jung, M. S. Seo, K. M. Lee, S. K. Kim, and S. W. Lee, “High-responsivity deep-ultraviolet-selective photodetectors using ultrathin gallium oxide films,” ACS Photonics, vol. 4, pp. 2937−2943, 2017.
    [16] Q. Feng, F. Li, B. Dai, Z. Jia, W. Xie, T. Xu, X. Lu, X. Tao, J. Zhang, and Y. Hao, “The properties of gallium oxide thin film grown by pulsed laser deposition,” Appl. Surf. Sci., vol. 359, pp. 847−852, 2015.
    [17] F. Zhang, M. Arita, X. Wang, Z. chen, K. Saito, T. Tanaka, M. Nishio, and Q. Guo, “Toward controlling the carrier density of Si doped Ga2O3 films by pulsed laser deposition,” Appl. Phys. Lett., vol. 109, pp. 100−104, 2016.
    [18] Q. Guo, K. Nishihagi, Z. Chen, K. Saito, and T. Tannka, “Characteristics of thulium doped gallium oxide films grown by pulsed laser deposition,” Thin Solid Films, vol. 639, pp. 123−126, 2017.
    [19] E. J. Lee, and S. O. Ryu, “Characterization of ALD processed gallium doped TiO2 hole blocking layer in an inverted organic solar cell,” J. Electron. Mater., vol. 46, pp. 961−966, 2017.
    [20] P. Lin, X. Chen, K. Zhang, and H. Baumgart, “Improved gas sensing performance of ALD AZO 3-D coated ZnO nanorods,” ECS J. Solid State Sci. Technol., vol. 7, pp. 246−252, 2018.
    [21] H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels, “Plasma-assisted atomic layer deposition basics opportunities and challenges,” J. Vac. Sci. Technol. A, vol. 29, pp. 050801-1−050801-26, 2011.
    [22] R. O’Donoghue, J. Rechmann, M. Aghaee, D. Rogalla, H. W. Becker, M. Creatore, A. D. Wieck, and A. Devi, “Low temperature growth of gallium oxide thin films via plasma enhanced atomic layer deposition,” Dalton Trans., vol. 46, pp. 16551−16561, 2017.
    [23] M. Liao, and Y. Koide, “High-performance metal-semiconductor-metal deep-ultraviolet photodetectors based on homoepitaxial diamond thin film,” Appl. Phys. Lett., vol. 89, pp. 113509-1−113509-3, 2006.
    [24] Z. D. Huang, W. Y. Weng, S. J. Chang, Y. F. Hua, C. J. Chiu, and T. Y. Tsai, “Ga2O3/GaN-based metal-semiconductor-metal photodetectors covered with Au nanoparticles,” IEEE Photonic Technol. Lett., vol. 25, pp. 1809−1811, 2013.
    [25] Y. Gerchman, H. Mamane, N. Friedmanc, and M. Mandelboim, “UV-LED disinfection of Coronavirus: Wavelength effect,” J. Photochem. Photobiol. B, Biol., vol. 212, pp. 112044-1−112044-9, 2020.
    [26] M. Heßling, K. Hönes, P. Vatter, and C. Lingenfelder, “Ultraviolet irradiation doses for coronavirus inactivation – review and analysis of coronavirus photoinactivation studies,” GMS. Hyg. Infect. Control., vol. 15, pp. doc.08-1− doc.08-8, 2020.
    [27] B. B. Surjadinata, D. A. Jacobo-Velázquez and L. Cisneros-Zevallos, “UVA, UVB and UVC light enhances the biosynthesis of phenolic antioxidants in fresh-cut carrot through a synergistic effect with wounding,” Molecules, vol. 22, pp. 668-1−668-13, 2017.
    [28] V. Barkhordarian, “Power MOSFET basics,” powerconversion and Intelligent Motion-English Edition, 22.6, pp.1−13, 1996.
    [29] D. Litwiller, "Ccd vs. cmos," Photonics spectra, vol. 35, pp. 154−158, 2001.
    [30] HighTech,"台積電 半導體製程競爭力關鍵:FinFET 工作原理,"Ansforce。
    [31] P. H. Huang, Y. C. Shen, C. Y. Tung, C. Y. Huang, C. S. Tan, and R. H. Horng, “Energy-saving ZnGa2O4 phototransistor improved by thermal annealing,” ACS Appl. Electron. Mater., vol. 2, pp. 3515–3521, 2020
    [32] Y. C. Shen, P. H. Huang, C. Y. Tung, C. Y. Huang, C.S. Tan, Y. S. Huang, L. J. Chen, J, H. He, and R. H. Horng, “Power saving high performance deep-ultraviolet phototransistors made of ZnGa2O4 epilayers,” ACS Appl. Electron. Mater., vol. 2, pp. 590–596, 2020.
    [33] G. Wee, T. Salim, Y. M. Lam, S. G. Mhaisalkar, and M. Srinivasan, “Printable photo-supercapacitor using single-walled carbon nanotubes,” Energy Environ. Sci., vol. 4, pp. 413–416, 2011.
    [34] X. Xu, S. Li, H. Zhang, Y. Shen, S. M. Zakeeruddin, M. Graetzel, Y. B. Cheng, and M. Wang, “A power pack based on organometallic perovskite solar cell and supercapacitor,” ACS Nano., vol 9, pp. 1782–1787, 2015.
    [35] J, C. Campbell, “Phototransistors for lightwave communications,” Semicond. Semimet., vol. 22, pp 389–447, 1985.
    [36] L. Yin, C. Han, Q. Zhang, Z. Ni, S. Zhao, K. Wang, D. Li, M. Xu, H. Wu, Xi. Pi, and D. Yang, “Synaptic silicon-nanocrystal phototransistors for neuromorphic computing,” Nano Energy, vol. 63, pp. 103859-1–103859-11, 2019.
    [37] V. Q. Dang, T. Q. Trung, L. T. Duy, B. Y. Kim, S. Siddiqui, W. Lee, and N. E. Lee, “High-performance flexible ultraviolet (UV) phototransistor using hybrid channel of vertical ZnO nanorods and graphene,” ACS Appl. Mater. Interfaces, vol. 7, pp. 11032–11040, 2015.
    [38] S. Knobelspies, A. Daus, G. Cantarella, L. G. Tröster, and G. A. Salvatore, “Flexible a-IGZO phototransistor for instantaneous and cumulative UV-exposure monitoring for skin health,” Adv. Electron. Mater., vol. 2, pp. 1600273-1–1600273-6, 2016.
    [39] S. Kim, S. Oh, and Ji. Kim, “Ultrahigh deep-UV sensitivity in graphene-gated β‑Ga2O3 phototransistors,” ACS Photonics, vol. 6, pp. 1026−1032, 2019.
    [40] S. Ahn, Y. H. Lin, F. Ren, S. Oh, Y. Jung, G. Yang, J. Kim, M. A. Mastro, J. K. Hite, C. R. Eddy, and S. J. Pearton, “Effect of 5  MeV proton irradiation damage on performance of β-Ga2O3 photodetectors,” J. Vac. Sci. Technol. B, vol. 34, pp. 041213-1−041213-6, 2016.
    [41] M. Zhong, Z. Wei, X. Meng, F. Wu, and J. Li, “High-performance single crystalline UV photodetectors of β-Ga2O3,” J. Alloy. Compd., vol. 619, pp. 572−575, 2015.
    [42] M. A. Mastro, A. Kuramata, and J. Calkins, “Perspective-opportunities and future directions for Ga2O3,” ECS J. Solid State Sci. Technol., vol. 6, pp. 356−359, 2017.
    [43] H. Y. Lee, J. T. Liu, and C. T. Lee, “Modulated Al2O3-alloyed Ga2O3 materials and deep ultraviolet photodetectors,” IEEE Photonics Technol. Lett., vol. 30, pp. 549−552, 2018.
    [44] S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, “A review of Ga2O3 materials, processing, and devices,” Appl. Phys. Rev., vol. 5, pp. 011301-1−011301-56, 2018.
    [45] M. Mohamed, I. Unger, C. Janowitz, R. Manzke, Z. Galazka, R. Uecker, and R. Fornari, “The surface band structure of β-Ga2O3,” J. Phys. Conf. Ser., vol. 286, pp. 012027-1−012027-10, 2011.
    [46] H. Y. He, M. A. Blanco, and R. Pandey, “Electronic and thermodynamic properties of β-Ga2O3,” Appl. Phys. Lett., vol. 88, pp. 261904-1−261904-3, 2016.
    [47] J. Robertsona, “High dielectric constant oxides,” Appl. Phys., vol. 28, pp. 265−291, 2004.
    [48] L. P. HJeurgens, W. G. Sloof, F. D. Tichelaar and, E. J. Mittemeijer, “Structure and morphology of aluminium-oxide films formed by thermal oxidation of aluminium,” Thin Solid Films, vol. 418, pp. 89−101, 2002.
    [49] F. Argall, and A. K. Jonscher, “Dielectric properties of thin film of aluminium oxide and silicon oxide,” Thin Solid Films, Vol. 2, pp 185−210, 1968.
    [50] B. M. Henry, A. G. Erlat, A. M. Guigan, C. R. M. Grovenor, G. A. D. Briggs, Y. Tsukahara, T. Miyamoto, N. Noguchi, and T. Niijima, “Characterization of transparent aluminium oxide and indium tin oxide layers on polymer substrates,” Thin Solid Films, vol. 382, pp 194−201, 2001.
    [51] C. Pflitsch, A. Muhsin, U. Bergmann, and B.Atakan, ”Growth of thin aluminium oxide films on stainless steel by MOCVD at ambient pressure and by using a hot-wall CVD-setup,” Surf. Coat. Technol., vol. 201, pp 73−81, 2006.
    [52] T. Kamimura, K. Sasaki, M. Hoi Wong, D. Krishnamurthy, A. Kuramata, T. Masui, S. Yamakoshi, and M. Higashiwaki, “Band alignment and electrical properties of Al2O3/β-Ga2O3 heterojunctions,” Appl. Phys. Lett., vol. 104, pp. 192104-1−192104-5, 2014.
    [53] S. Y. Chu, M. X. Shen, T. H. Yeh, C. H. Chen, C. T. Lee, and H. Y. Lee, “Investigation of Ga2O3-based deep ultraviolet photodetectors using plasma-enhanced atomic layer deposition system,” sensors, vol. 20, pp 6159-1−6159-10, 2020.
    [54] K. Lee, M. Shur, T. A. Fjeldly, and T. Ytterdal, “Semiconductor devices modeling for VLSI,” Prentice Hall, 1st, 1997.
    [55] S. M. Sze, D. J. Coleman JR., and A. Loya, “Current transport in metal-semiconductor-metal structures,” Solid-State Electron., vol. 14, pp. 1209−1218, 1971.
    [56] S. S. Kumar, E. J. Rubio, M. Noor-A-Alam, G. Martinez, S. Manandhar, V. Shutthanandan, S. Thevuthasan, and C. V. Ramana, “Structure, morphology, and optical properties of amorphous and nanocrystalline gallium oxide thin films,” J. Phys. Chem. C., vol. 117, pp. 4194−4200, 2013.
    [57] A. A. Akl, and S. A. Mahmoud, “Effect of growth temperatures on the surface morphology, optical analysis, dielectric constants, electric susceptibility, urbach and bandgap energy of sprayed NiO thin films,” Optik, vol. 172, pp. 783−793, 2018.
    [58] H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, T. Egawa, T. Jimbo, and M. Umeno, “Back-illuminated GaN metal-semiconductor- metal UV photodetector with high internal gain,” Jpn. J. Appl. Phys., vol. 40, pp. L505−L507, 2001.
    [59] S. Yang, Y. Li, X. Wang, N. Huo, J. B. Xia, S. S. Li, and J. Li, “High performance few-layer GaS photodetector and its unique photo-response in different gas environments”, Nanoscale., vol. 6, pp. 2582−2587, 2014.
    [60] E. Muñoz, E. Monroy, J. A. Garrido, I. Izpura, F. J. Sánchez, M. A. S. Garcı́a, and E. Calleja, “Photoconductor gain mechanisms in GaN”, Appl Phys. Lett., vol. 71, pp. 870−872, 1997.
    [61] O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN schottky ultraviolet detectors,” Appl. Phys. Lett., vol. 79, pp. 1417−1419, 2001.
    [62] H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, T. Egawa, T. Jimbo, and M. Umeno, “Back-illuminated GaN metal-semiconductor- metal UV photodetector with high internal gain,” Jpn. J. Appl. Phys., vol. 40, pp. L505−L507, 2001.
    [63] 黃柏翔,電荷陷阱對多晶矽穿隧式電晶體的閘極對汲極非交疊式結構影響之研究,國立中山大學電機工程學系碩士論文,2017。
    [64] 莊仁吉, “鎳金屬誘發側向結晶-低溫複晶矽薄膜電晶體之漏電流與可靠度研究,” 國立交通大學工學院半導體材料與製程設備學程碩士論文,2009。
    [65] E. Takeda, and N. Suzuki, “An empirical model for device degradation due to hot-carrier injection,” IEEE Electron Device Lett., vol 4, pp. 111−113, 1983.
    [66] T. Frank, “Quantum tunnelling to the origin and evolution of Life,” Curr Org Chem, vol. 17, pp. 1758−1770, 2013.
    [67] 陳方中、莊紹棠、林書丞、林辰威、楊浩智” 有機光電流增益現象之探討與其在光偵測器的應用研究成果報告”,2011。
    [68] 楊雲凱 "物理氣相沉積(PVD)介紹," 國家奈米元件實驗室奈米通訊, 第22卷4期, 33−35頁,2015。
    [69] P. O. Oviroh, R. Akbarzadeh, D Pan, R. A. M. Coetzee, and T. C. Jen, “New development of atomic layer deposition: processes, methods and applications,” Sci Technol Adv Mater, vol. 20, pp. 465–496, 2019.
    [70] 謝嘉民、賴一凡、林永昌、枋志堯 "光激發螢光量測的原理、架構及應用",科儀新知,第146期, 39–51頁,2005。
    [71] Q. N. Abdullah, F. K. Yama, K. H. Mohmoodb, Z. Hassan, M. A. Qaeed, M.Bououdina, M. A. Almessiere, A. L. Al-Otaibi, and S. A. Abdulateef, “Free growth of one-dimensional β-Ga2O3 nanostructures including nanowires, nanobelts and nanosheets using a thermal evaporation method,” Ceram. Int., vol. 42, pp. 13343–13349, 2016.
    [72] S. LiShujie, J. Dongbo, W. Shiyong, and G. J. Wang, “The influence of sputtering power on the structural, morphologicaland optical properties of β-Ga2O3 thin films,” J. Alloys Compd., vol. 753, pp. 186–191, 2018.
    [73] Wei, W.; Qin, Z.X.; Fan, S.F.; Li, Z.W.; Shi, K.; Zhu, Q.S.; and Zhang, G.Y., “Valence band offset of beta-Ga2O3/wurtzite GaN heterostructure measured by X-ray photoelectron spectroscopy,” Nanoscale Res. Lett., vol. 7, pp. 562-1–562-5, 2012
    [74] Y. Zhuo, Z. Chen, W. Tu, X. Ma, Y. Pei, and G. Wang, “β -Ga2O3versus ε-Ga2O3: Control of the crystal phase composition of gallium oxide thin film prepared by metal-organic chemical vapor deposition,” Appl. Surf. Sci., vol. 420, pp. 802–807, 2017.
    [75] B. Xu, J. Hu, X. He, X. Wang, D. li, and C. Chen, “Effect of growth temperature on the characteristics of β-Ga2O3 thin films grown on 4H-SiC (0001) substrates by low pressure chemical vapor deposition,” 2021 IEEE 4th International Conference on Electronics Technology, pp. 20747818-1–20747818-4, 2021.
    [76] Y. An, L. Dai, Y. Wu, B. Wu, Y. Zhao, T. Liu, H. Hao, Z. Li, G. Niuz, J. Zhang, Z. Quan, and S. Ding, “Epitaxial growth of β-Ga2O3 thin films on Ga2O3 and Al2O3 substrates by using pulsed laser deposition,” J. Adv. Dielectr., vol. 9, pp. 1950032-1–1950032-7, 2019.
    [77] Z. Han, H. Liang, W. Huo, X. Zhu, X. Du, and Z. Mei, “Boosted UV photodetection performance in chemically etched amorphous Ga2O3 thin-film transistors,” Adv. Optical Mater., vol. 8, pp. 1901833-1–1901833-8, 2020.
    [78] Z. Li, Z. Feng, Y. Xu, Q. Feng, W. Zhu, D. Chen, H. Zhou, J. Zhang, C. Zhang, and Y. Hao, “High performance β-Ga2O3 solar-blind metal–oxide–semiconductor field-effect phototransistor with hafnium oxide gate dielectric process,” IEEE Electron Device Lett., vol. 42, pp. 545–548, 2021.

    無法下載圖示 校內:2026-10-20公開
    校外:2026-10-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE