簡易檢索 / 詳目顯示

研究生: 李雨秦
Li, Yu-Chin
論文名稱: 一基於遞迴多混沌系統與使用外部秘密金鑰的複合式區塊加密系統
A combinative block cryptosystem based on iterating multiple chaotic maps with external secret key
指導教授: 陳進興
Chen, Chin-Hsing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 64
中文關鍵詞: 混沌系統加密系統外部秘密金鑰
外文關鍵詞: chaotic map, cryptosystem, external secret key
相關次數: 點閱:110下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 混沌加密系統在這近二十年一直是一個重要的研究領域。由於混沌理論與加密系統密切的關係,使混沌理論廣泛的應用在安全性傳輸與加密系統當中。基於混沌訊號中雜訊般的訊號以及混沌系統對初始值的高敏感性,許多混沌加密系統被提出並應用在安全性傳輸上。

    本論文提出一基於遞迴多混沌系統與使用外部秘密金鑰的複合式區塊加密系統。此加密系統使用一個128位元的外部秘密金鑰及四個一維混沌系統,此方法利用 J. Wei 2007及X. Wang 2009兩個加密系統建構而成。所提系統由Wang的演算法組成核心部份,再加上Wei的演算法來提升速度。它保持了上述兩加密系統原有的優點且避開其缺點。再者,我們亦修改部份的運算法以更提升安全性與加快系統速度。

    所提加密系統的金鑰空間高達 ,到達可以抵擋暴力破解攻擊的標準。對於一大小為512 512的灰階影像檔案,加密後的影像將原來熵值7.475746提升到7.999413,此數值非常接近理想值8,而加 / 解密的平均時間為0.9秒,比起Wang的加密系統快了2.5秒。而加密後影像的相關係數幾乎為零,代表兩相鄰的點幾乎不相關。在key的敏感度測試上,我們對原始 / 加密後的影像,使用非常微小變化的key來加 / 解密,得到的NCPR值均高達99%以上。而使用本加密系統得到的密文大小與明文相同。實驗結果顯示本加密系統非常適合實際應用於安全傳輸。

    Chaotic cryptography has been an important research area during the last two decades. The close relationship between chaos and cryptosystem makes chaos be used in secure communication and cryptosystem. Based on the facts that chaotic signals are usually noise-like and chaotic systems are very sensitive to initial conditions, a number of digital chaotic cryptographic approaches have been studied so far for secure communications.

    In this thesis, a block cryptographic scheme based on iterating multiple chaotic maps is proposed. The proposed cryptosystem uses the external 128-bit secret key and four one-dimensional chaotic maps. The proposed scheme is a combination of J. Wei cryptosystem and X. Wang’s. Its kernel is from X. Wang’s algorithm, then the idea of J. Wei’s algorithm is used to speed up the proposed cryptosystem. We keep the merits while avoiding the flaws of the two existing cryptosystems. Furthermore, we modify some parts of the algorithms to enhance the security and speed up the proposed cryptosystem.

    The keyspace of our proposed method is which is large enough to resist the brute-force attack. For a 512 512 256 grayscale image file, the entropy of ciphertext is 7.999413 which approximate to 8 while the plaintext one is 7.475746, and the average encryption / decryption time is about 0.9 second. It’s 2.5 second faster than Wang’s cryptosystem. The correlation coefficient of the encrypted image is approximated to zero. For key sensitive test, the value of NCPR between two images encrypted / decrypted using slightly different keys is over 99%. The size of ciphertext is the same as the plaintext size. Simulation results show that the performance of the proposed cryptographic scheme is suitable for practical use in the secure transmission.

    摘要 I Abstract III 誌謝 V Content VI Table Captions VIII Figure Captions IX Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Background 1 1.3 Previous works 4 1.4 Organization 7 Chapter2 A Series of Cryptosystems 8 2.1 Cryptography with chaos 8 2.1.1 Cryptosystem for Baptista 8 2.1.2 The drawbacks with Baptista’s approach 12 2.2 Cryptosystems with dynamic look-up table 13 2.2.1 Speed and size of cryptosystem 13 2.2.2 K. W. Wong 2005 18 2.3 Cryptosystems using external key 20 2.3.1 N. K. Pareek 2003 20 2.3.2 N. K. Pareek 2005 22 2.3.3 J. Wei 2007 24 2.4 Cryptosystems based on iterating a chaotic map 27 2.4.1 T. Xiang 2006 27 2.4.2 Y. Wang 2007 30 2.4.3 X. Wang 2009 31 Chapter 3 Cryptanalysis 33 3.1 Cryptanalysis of an ergodic cipher 34 3.2 Cryptanalysis of dynamic look-up table 35 3.3 Cryptanalysis of external key 39 3.3.1 Cryptanalysis for one-dimensional chaotic maps 39 3.3.2 Cryptanalysis for multiple one-dimensional chaotic maps 40 Chapter 4 The proposed cryptosystem 44 4.1 The frame of the proposed cryptosystem 44 4.2 Improvement 49 4.3 Cryptanalysis 50 Chapter 5 Experimental results 52 Chapter 6 Conclusion 60 References 61

    [1] G. Alvarez and S. Li, “Some basic cryptographic requirements for chaos-based cryptosystems,” International Journal of Bifurcation and Chaos, Vol. 16, No. 8, Pages:2129-2151, 2006.
    [2] G. Alvarez, F. Montoya, M. Romera and G. Pastor, “Cryptanalysis of an ergodic chaotic cipher,” Physics Letters A, Vol. 311, Pages:172-179, 2003.
    [3] G. Alverez, F. Montoya, M. Romera and G. Pastor, “Cryptanalysis of a discrete chaotic cryptosystem using external key,” Physics Letters A, Vol. 319, Pages:334-339, 2003.
    [4] G. Alvarez, F. Montoya, M. Romera and G. Pastor, “Keystream cryptanalysis of a chaotic cryptographic method,” Computer Physics Communications, Vol. 156, Pages:205-207, 2004.
    [5] G. Alvarez, F. Montoya, M. Romera and G. Pastor, “Cryptanalysis of dynamic look-up table based chaotic cryptosystems,” Physics Letters A, Vol. 326, Pages:211-218, 2004.
    [6] D. Arroyo, G. Alvarez and V. Fernandez, “A basic framework for the cryptanalysis of digital chaos-based cryptography,” International Multi-Conference on Systems, Signals and Devices, 2009.
    [7] M. S. Baptista, “Cryptography with chaos,” Physics Letters A, Vol. 240, Pages:50-54, 1998.
    [8] Douglas R. Stinson, “Cryptography: Theory and Practice”, 3rd edition, CRC Press.
    [9] F. Huang and Z. H. Guan, “Cryptosystem using chaotic keys,” Chaos, Solitons and Fractals, Vol. 23, Pages:851-855, 2005.
    [10] L. Kocarev, “Chaos-based cryptography: A brief overview,” IEEE Circuits and Systems Magazine, Vol. 1, Pages:6-21, 2001.
    [11] C. Li, S. Li, G. Alvarez, G. Chen, K. T. Lo, “Cryptanalysis of a chaotic block cipher with external key and its improved version,” Chaos, Solitons and Fractals, Vol. 37, Pages:299-307, 2008.
    [12] N. K. Pareek, V. Patidar, K. K. Sub, “Discrete chaotic cryptography using external key,” Physics Letters A, Vol. 309, Pages:75-82, 2003.
    [13] N. K. Pareek, V. Patidar, K. K. Sub, “Cryptography using multiple one-dimensional chaotic maps,” Communications in Nonlinear Science and Numerical Simulation, Vol. 10, Pages:715-723, 2005.
    [14] Y. Wang, X. Liao, T. Xiang, K. W. Wong and D. Yang, “Cryptanalysis and improvement on a block cryptosystem based on iteration a chaotic map,” Physics Letters A, Vol. 363, Pages:277-281, 2007.
    [15] X. Wang, C. Yu, “Cryptanalysis and improvement on a cryptosystem based on a chaotic map,” Computers and Mathematics with Applications, Vol. 57, Pages:476-482, 2009.
    [16] J. Wei, X. Liao, K. W. Wong and T. Xiang, “A new chaotic cryptosystem,” Chaos, Solitons and Fractals, Vol. 30, Pages:1143-1152, 2006.
    [17] J. Wei, X. Liao, K. K. Wong, T. Zhou, “Cryptanalysis of a cryptosystem using one-dimensional chaotic maps,” Communications in Nonlinear Science and Numerical Simulation, Vol. 12, Pages:814-822, 2007.
    [18] K. W. Wong, “A fast chaotic cryptographic scheme with dynamic look-up table,” Physics Letters A, Vol. 298, Pages:238-242, 2002.
    [19] K. W. Wong, “A combined chaotic cryptographic and hashing scheme,” Physics Letters A, Vol. 307, Pages:292-298, 2003.
    [20] K. W. Wong, S. W. Ho and C. K. Yung, “A chaotic cryptography scheme for generating short ciphertext,” Physics Letters A, Vol. 310, Pages:67-73, 2003.
    [21] W. K. Wong, L. P. Lee and K. W. Wong, “A modified chaotic cryptographic method,” Computer Physics Communications, Vol. 138, Pages:234-236, 2001.
    [22] K. W. Wong, K. P. Man, S. Li, X. Liao, “A more secure chaotic cryptographic scheme based on the dynamic look-up table”, Circuits Systems Signal Processing, Vol. 24, Pages:571-584, 2005.
    [23] T. Xiang, X. Liao, G. Tang, Y. Chen and K. W. Wong, “A novel block cryptosystem based on iterating a chaotic map,” Physics Letters A, Vol. 349, Pages:109-115, 2006.
    [24] T. Xiang, K. W. Wong, X. Liao, “An improved chaotic cryptosystem with external key,” Communications in Nonlinear Science and Numerical Simulation, Vol. 13 Pages:1879-1887, 2008.

    下載圖示 校內:2015-08-12公開
    校外:2015-08-12公開
    QR CODE