| 研究生: |
陳怡文 Chen, Yi-Wen |
|---|---|
| 論文名稱: |
結合生物資訊暨實驗篩選以尋找 Wnt/β-catenin 傳遞路徑之新穎基因 Identifying novel target genes of the Wnt/β-catenin signaling pathway using a combined bioinformatics and experimental approach |
| 指導教授: |
何中良
Ho, Chung-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | Wnt/β-catenin 傳遞路徑 、標靶基因 、Expressed Sequence Tags 資料庫 、生物資訊分析 、β-catenin/TCF complex 、染色質免疫沉澱法 |
| 外文關鍵詞: | Wnt/β-catenin signaling pathway, target genes, Expressed Sequence Tags, bioinformatics, β-catenin/TCF complex, chromatin immunoprecipitation assay |
| 相關次數: | 點閱:152 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Wnt/β-catenin 傳遞路徑在胚胎發育及腫瘤生成過程中都扮演著相當重要的角色。在許多人類的惡性腫瘤中皆會發現不正常活化此路徑及其下游的標靶基因,能促進腫瘤的生成。目前已有多個 Wnt/β-catenin 標靶基因被發現在腫瘤生成中扮演關鍵角色,如 c-myc,cyclin D1,MMPs 及survivin 等。因此,透過鑑定 Wnt/β-catenin 標靶基因去瞭解其所調控的腫瘤生成是很重要的議題。在過去實驗室建立了一個結構完整、具擴展性的生物資料庫,簡稱 Bio-database。我們將此生物資料庫運用來尋找有潛力的 Wnt/β-catenin 標靶基因。用已知的 65 個 Wnt/β-catenin 基因設定參數後,從資料庫中初步找出 161 個基因,並經由文獻搜尋將其分成 111 個已知功能基因和 50 個未知功能基因。而在已知功能基因中確實存在高比例的 Wnt/β-catenin 標靶基因,所以我們相信在 50 個未知功能基因中應該也存在著新穎的 Wnt/β-catenin 標靶基因。我們從 50 個基因中隨機挑選 25 個基因去鑑定其是否為 Wnt/β-catenin 標靶基因。利用 Lithium chloride 和 Wnt-3A 條件培養液,兩種不同的方式去活化 SK-hep-1 細胞的 Wnt/β-catenin 傳遞路徑,再經由半定量 RT-PCR 發現 25 個未知基因中,有 4 個基因 (U496、U75、U39 及 FLJ10156) 的 mRNA 表現量會增加。進一步去探討這 4 個基因的表現是否直接被 β-catenin/TCF complex 所調控,透過染色質免疫沉澱法證實 β-catenin/TCF complex 會結合於 U496、U75 及 U39 的 promoter 位置。除此之外,我們發現這三個基因皆會在肝癌腫瘤組織大量表現。最後去評估這三個基因在腫瘤大量表現的臨床意義,將基因表現情形與肝癌病理參數進行相關性分析,但初步發現這些基因與肝癌病理特質沒有統計上的意義。總結目前的實驗結果,我們利用生物資訊分析結合實驗篩選可找到 U496、U75 及 U39 為 Wnt/β-catenin 的標靶基因,並且在腫瘤組織中會大量表現,推測在腫瘤生成過程中應有其特殊的生物意義。
The Wnt/β-catenin signaling pathway plays an important role in embryogenesis and tumorigenesis. Misregulation of the Wnt/β-catenin signaling pathway and aberrant activation of target genes of Wnt/β-catenin are common in various human cancers and contribute to cancer progression. Several target genes are known to be key players in tumourigenesis, such as c-myc, cyclin D1, MMPs or survivin. Therefore, identifying the target genes of Wnt/β-catenin signaling pathway is important for understanding Wnt/β-catenin-mediated carcinogenesis. Previously, our lab set up a structured and scalable bioinformatics database- Bio-database. We applied Bio-database to search candidate target genes of Wnt/β-catenin. Using 65 published genes of Wnt/β-catenin as references to set the thresholds of bioinformatics analysis yielded 111 genes with known functions and 50 genes with unknown functions. In the 111 known genes, we indeed found a high percentage of target genes of Wnt/β-catenin. Hence, we believed that the 50 unknown genes may contain novel target genes of Wnt/β-catenin. We chose 25 of 50 unknown genes to examine whether these canadidate genes were novel target genes of Wnt/β-catenin. SK-hep-1 cells were treated with Lithium chloride or Wnt3A-conditioned medium, two different methods to activate the Wnt/β-catenin signaling pathway. By semi-quantitative RT-PCR, the mRNA expression of four genes (U496, U75, U39 and FLJ10156) was found to be up-regulated in cells with activated Wnt/β-catenin pathway. Chromatin immunoprecipitation (ChIP) assay was performed to further examine whether the expression of four genes was directly regulated by β-catenin /TCF (T cell factor) complex. The ChIP assay demonstrated direct interaction of β-catenin/TCF complex with the promoter of three genes (U496, U75 and U39). In addition, the mRNA expression of the three genes was significantly up-regulated in some of the hepatic tumors. To assess the potential clinical significance of the three genes, we examined their correlation with a variety of pathological factors. However, no statistical significance was observed between the three genes and pathologic features in liver cancer. In conclusion, the U496, U75 and U39 genes are direct targets of Wnt/β-catenin and are overexpressed in hepatic tumor. They may play an important role in tumorigenesis.
1.R, N., An ancient cluster of Wnt paralogues. Trends Genet. , 2001. 17(8): p. 443.
2.Du SJ, P.S., Christian JL, McGrew LL, Moon RT., Identification of distinct classes and functional domains of Wnts through expression of wild-type and chimeric proteins in Xenopus embryos. Mol Cell Biol. , 1995 15(5): p. 2625-2634.
3.JR, M., The Wnts. Genome Biol. , 2002. 3(1): p. REVIEWS3001.
4.Dierick H, B.A., Cellular mechanisms of wingless/Wnt signal transduction. Curr Top Dev Biol. , 1999. 43: p. 153-90.
5.Takada R, S.Y., Kurata T, Ueno N, Norioka S, Kondoh H, Takao T, Takada S., Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev Cell. , 2006. 11(6): p. 791-801.
6.Logan CY, N.R., The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. , 2004. 20(1): p. 781-810.
7.Dann CE, H.J., Rattner A, Sharma D, Nathans J, Leahy DJ., Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Nature. , 2001. 412(6842): p. 86-90.
8.Huang HC, K.P., The Frizzled family: receptors for multiple signal transduction pathways. Genome Biol. , 2004. 5(7): p. 234.
9.Schulte G, B.V., The Frizzled family of unconventional G-protein-coupled receptors. Trends Pharmacol Sci. , 2007. 28(10): p. 518-525.
10.Tamai K, S.M., Kato Y, Spokony R, Liu C, Katsuyama Y, Hess F, Saint-Jeannet JP, He X., LDL-receptor-related proteins in Wnt signal transduction. Nature. , 2000. 407(6803): p. 530-535.
11.Williams BO, I.K., Where Wnts went: the exploding field of Lrp5 and Lrp6 signaling in bone. J Bone Miner Res. , 2009. 24(2): p. 171-178.
12.Mikels AJ, N.R., Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol. , 2006. 4(4): p. e115.
13.Chien AJ, C.W., Moon RT., A Wnt survival guide: from flies to human disease. J Invest Dermatol. , 2009. 129(7): p. 1614-1627.
14.Liu X, L.T., Slusarski DC, Yang-Snyder J, Malbon CC, Moon RT, Wang H., Activation of a frizzled-2/beta-adrenergic receptor chimera promotes Wnt signaling and differentiation of mouse F9 teratocarcinoma cells via Galphao and Galphat. Proc Natl Acad Sci U S A. , 1999. 96(25): p. 14383-14388.
15.Sheldahl LC, P.M., Malbon CC, Moon RT., Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner. Curr Biol. , 1999. 9(13): p. 695-698.
16.Torres MA, Y.-S.J., Purcell SM, DeMarais AA, McGrew LL, Moon RT., Activities of the Wnt-1 class of secreted signaling factors are antagonized by the Wnt-5A class and by a dominant negative cadherin in early Xenopus development. J Cell Biol. , 1996. 133: p. 1123-1137.
17.Kohn AD, M.R., Wnt and calcium signaling: beta-catenin-independent pathways. Cell Calcium. , 2005. 38(3-4): p. 439-446.
18.Yamamoto H, K.S., Kishida M, Ikeda S, Takada S, Kikuchi A., Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3beta regulates its stability. J Biol Chem. , 1999. 274(16): p. 10681-10684.
19.Liu C, L.Y., Semenov M, Han C, Baeg GH, Tan Y, Zhang Z, Lin X, He X., Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. , 2002. 108(6): p. 837-847.
20.Wu G, X.G., Schulman BA, Jeffrey PD, Harper JW, Pavletich NP., Structure of a beta-TrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase. Mol Cell. , 2003. 11(6): p. 1445-1456.
21.Mao J, W.J., Liu B, Pan W, Farr GH 3rd, Flynn C, Yuan H, Takada S, Kimelman D, Li L, Wu D., Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol Cell. , 2001. 7(4): p. 801-809.
22.P., P., Wnt signaling and cancer. Genes Dev. , 2000. 14(15): p. 1837-1851.
23.Giles RH, v.E.J., Clevers H., Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta. , 2003. 1653(1): p. 1-24.
24.Provost E, M.A., Stern J, Lizardi I, D'Aquila TG, Rimm DL., Functional correlates of mutation of the Asp32 and Gly34 residues of beta-catenin. Oncogene. , 2005. 24(16): p. 2667-2676.
25.A., K., Tumor formation by genetic mutations in the components of the Wnt signaling pathway. Cancer Sci. , 2003. 94(3): p. 225–229.
26.Gehrke I, G.R., Kreuzer KA., Targeting the WNT/beta-catenin/TCF/LEF1 axis in solid and haematological cancers: Multiplicity of therapeutic options. Eur J Cancer. , 2009. 45(16): p. 2759-2767.
27.Luu HH, Z.R., Haydon RC, Rayburn E, Kang Q, Si W, Park JK, Wang H, Peng Y, Jiang W, He TC., Wnt/beta-catenin signaling pathway as a novel cancer drug target. Curr Cancer Drug Targets. , 2004. 4(8): p. 653-671.
28.Dihlmann S, v.K.D.M., Wnt/beta-catenin-pathway as a molecular target for future anti-cancer therapeutics. International Journal of Cancer., 2005. 113(4): p. 515-524.
29.Pishvaian MJ, B.S., Biomarkers of WNT signaling. Cancer Biomark. , 2007. 3 (4-5): p. 263-274.
30.Vignjevic D, S.M., Gavert N, Janssen KP, Jih G, Laé M, Louvard D, Ben-Ze'ev A, Robine S., Fascin, a novel target of beta-catenin-TCF signaling, is expressed at the invasive front of human colon cancer. Cancer Res. , 2007. 67(14): p. 6844-6853.
31.Sato MM, N.A., Nashimoto M, Yawaka Y, Tamura M., Bone morphogenetic protein-2 enhances Wnt/beta-catenin signaling-induced osteoprotegerin expression. Genes Cells. , 2009. 14(2): p. 141-53.
32.Nuñez F, B.S., Cruzat F, Montecino M, De Ferrari GV., Wnt/β-catenin signaling enhances cyclooxygenase-2 (COX2) transcriptional activity in gastric cancer cells. PLoS One. , 2011. 6(4): p. e18562.
33.MacDonald BT, T.K., He X., Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. , 2009. 17(1): p. 9-26.
34.Zhao DH, H.J., Guo SY, Yang RL, Yuan J, Wen CY, Zhou KY, Li CJ., Aberrant expression and function of TCF4 in the proliferation of hepatocellular carcinoma cell line BEL-7402. Cell Res. , 2004. 14(1): p. 74-80.
35.Omer CA, M.P., Diehl RE, Kral AM., Identification of Tcf4 residues involved in high-affinity beta-catenin binding. Biochem Biophys Res Commun. , 1999. 256(3): p. 584-590.
36.Clifton SW, M.M., Strategies for undertaking expressed sequence tag (EST) projects. Methods Mol Biol. , 2009. 533: p. 1-20.
37.Ma Y, Q.X., Du J, Song S, Feng D, Qi J, Zhu Z, Zhang X, Xiao H, Han Z, Hao X., Identification of candidate genes for human pituitary development by EST analysis. BMC Genomics. , 2009. 10(1): p. 109.
38.Boguski MS, S.G., ESTablishing a human transcript map. Nat Genet. , 1995. 10(4): p. 369-71.
39.Severin SE, P.G., Katukov VU, Shmyrev II, Luzhkov YuM, Gerasimova GK, Zhukova OS, Vorozhtsov GN, Kaliya OL, Lukyanets EA, Severin ES., Antitumor activity of conjugates of the oncofetal protein alpha-fetoprotein and phthalocyanines in vitro. Biochem Mol Biol Int. , 1997. 43(4): p. 873-881.
40.Liao B, H.Y., Herrick DJ, Brewer G., The RNA-binding protein IMP-3 is a translational activator of insulin-like growth factor II leader-3 mRNA during proliferation of human K562 leukemia cells. J Biol Chem. , 2004. 280(18): p. 18517-18524.
41.Loganath A, P.K., Gunasegaram R, Thiagaraj D, Cheah E, Kottegoda SR, Ratnam SS., Comparison of AFP and beta-hCG levels in infiltrating duct mammary carcinoma at different stages of malignancy. Pathology. , 1988. 20(3): p. 275-278.
42.Shimokawa T, F.Y., Sakai M, Li M, Miwa N, Lin YM, Nakamura Y., Involvement of the FGF18 gene in colorectal carcinogenesis, as a novel downstream target of the beta-catenin/T-cell factor complex. Cancer Res. , 2003. 63(19): p. 6116-6120.
43.Güre AO, S.E., Scanlan MJ, Keresztes RS, Jäger D, Altorki NK, Old LJ, Chen YT., Serological identification of embryonic neural proteins as highly immunogenic tumor antigens in small cell lung cancer. Proc Natl Acad Sci U S A. , 2000. 97(8): p. 4198–4203.
44.Hsu CC, C.C., Cheng HC, Chang WT, Chou CY, Tsai HW, Lee CT, Wu ZH, Lee TY, Chao A, Chow NH, Ho CL., Identifying LRRC16B as an oncofetal gene with transforming enhancing capability using a combined bioinformatics and experimental approach. Oncogene. , 2010. 30(6): p. 654-667.
45.Hoshida Y, N.S., Kobayashi M, Chan JA, Brunet JP, Chiang DY, Villanueva A, Newell P, Ikeda K, Hashimoto M, Watanabe G, Gabriel S, Friedman SL, Kumada H, Llovet JM, Golub TR., Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. , 2009. 69(18): p. 7385-7392.
46.He TC, S.A., Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW., Identification of c-MYC as a Target of the APC Pathway. Science. , 1998. 281(5382): p. 1509-1512.
47.Shibamoto S, H.K., Takada R, Ito F, Takeichi M, Takada S., Cytoskeletal reorganization by soluble Wnt-3a protein signalling. Genes Cells. , 1998. 3(10): p. 659–670.
48.Du Q, P.K., Guo Z, He P, Nagashima M, Shao L, Sahai R, Geller DA, Hussain SP., Regulation of human nitric oxide synthase 2 expression by Wnt beta-catenin signaling. Cancer Res. , 2006. 66(14): p. 7024-7031.
49.Willert J, E.M., Pollack JR, Brown PO, Nusse R., A transcriptional response to Wnt protein in human embryonic carcinoma cells. BMC Dev Biol. , 2002. 2: p. 2-8.
50.Masckauchán TN, S.C., Funahashi Y, Li CM, Kitajewski J., Wnt/beta-catenin signaling induces proliferation, survival and interleukin-8 in human endothelial cells. Angiogenesis. , 2005. 8(1): p. 43-51.
51.Klapholz-Brown Z, W.G., Nusse YM, Nusse R, Brown PO., Transcriptional program induced by Wnt protein in human fibroblasts suggests mechanisms for cell cooperativity in defining tissue microenvironments. PLoS One. , 2007. 2(9): p. e945.
52.Rena V, A.S., Panzetta-Dutari G, Genti-Raimondi S., Activation of beta-catenin signalling increases StarD7 gene expression in JEG-3 cells. Placenta. , 2009. 30(10): p. 876-883.
53.Lee HS, L.D., Park MH, Yang SJ, Lee JJ, Kim DM, Jang Y, Lee JH, Choi JY, Kang YK, Kim DI, Park KC, Kim SY, Yoo HS, Choi EJ, Yeom YI., STMN2 is a novel target of beta-catenin/TCF-mediated transcription in human hepatoma cells. Biochem Biophys Res Commun. , 2006. 345(3): p. 1059-1067.
54.Lee HS, P.M., Yang SJ, Park KC, Kim NS, Kim YS, Kim DI, Yoo HS, Choi EJ, Yeom YI., Novel candidate targets of Wnt/beta-catenin signaling in hepatoma cells. Life Sci. , 2007. 80(7): p. 690-698.
55.Kavak E, N.A., Ozturk N, Seker T, Cavusoglu K, Aslan T, Duru AD, Saygili T, Hoxhaj G, Hiz MC, Unal DO, Birgül-Iyison N, Ozturk M, Koman A., Analysis of the Wnt/B-catenin/TCF4 pathway using SAGE, genome-wide microarray and promoter analysis: Identification of BRI3 and HSF2 as novel targets. Cell Signal. , 2010. 22(10): p. 1523-1535.
56.Hirose H, I.H., Mimori K, Tanaka F, Takemasa I, Mizushima T, Ikeda M, Yamamoto H, Sekimoto M, Doki Y, Mori M., The significance of PITX2 overexpression in human colorectal cancer. Ann Surg Oncol. , 2011.
57.Rahman MA, D.D., Yamaguchi E, Maruyama S, Sato T, Hayashi H, Ono T, Yamanoi A, Kohno H, Nagasue N., Coexpression of inducible nitric oxide synthase and COX-2 in hepatocellular carcinoma and surrounding liver: possible involvement of COX-2 in the angiogenesis of hepatitis C virus-positive cases. Clin Cancer Res. , 2011. 7(5): p. 1325-1332.
58.Lü B, F.Y., Xu J, Wang L, Xu F, Xu E, Huang Q, Lai M., Analysis of SOX9 expression in colorectal cancer. Am J Clin Pathol., 2008. 130(6): p. 897-904.
59.Miyamoto M, O.H., Iwasaki M, Shimizu H, Kokubu A, Hiraoka N, Kosuge T, Yoshikawa D, Kono T, Furukawa H, Shibata T., Prognostic significance of overexpression of c-Met oncoprotein in cholangiocarcinoma. Br J Cancer. , 2011. 105(1): p. 131-138.
60.Dılek FH, T.N., Tokyol Ç, Akbulut G, Dılek ON., β-Catenin and its relation to VEGF and cyclin D1 expression in pT3 rectosigmoid cancers. Turk J Gastroenterol. , 2010. 21(4): p. 365-371.
校內:2021-12-31公開