| 研究生: |
余昀潔 Yu, Yun-Chieh |
|---|---|
| 論文名稱: |
高速熔射塗覆碳化鎢塗層於Ti-6Al-4V並運用雷射再熔進行性質改良 Tungsten Carbide Coating on Ti-6Al-4V by High Velocity Oxygen Fuel Method and Its Modification with Laser Remelting |
| 指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系碩士在職專班 Department of Aeronautics & Astronautics (on the job class) |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 碳化鎢塗層 、鈦合金 、雷射再熔 、耐磨耗 、耐腐蝕 、硬度 、熱傳導係數 |
| 外文關鍵詞: | Tungsten carbide coating, titanium alloy, laser remelting, corrosion resistance, hardness, thermal conductivity, wear resistance |
| 相關次數: | 點閱:61 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究首先進行基材比較及選擇,再利用高速火焰熔射法塗佈碳化鎢塗層於鈦合金基板上,進行機械物理性質、耐腐蝕與熱傳導測試之實驗,並利用雷射雕刻機進行雷射再熔處理,期望能改進碳化鎢塗層之硬度、耐磨耗、耐腐蝕以及熱傳導等性能,使用不同的雷射功率參數進行調整後比較各性能之差異。研究中進行的性質測試包含:洛氏壓痕及維氏壓痕試驗機硬度測試、往復式磨粒磨耗測試、重量損失浸泡耐腐蝕測試以及熱傳導性測試。並且利用電子顯微鏡觀察再熔處理後之表面形貌差異,由表面之形貌觀測發現,使用適當的雷射功率進行再熔處理,對於塗層表面塗覆平整度及孔隙度都有顯著的提升。本研究顯示再熔處理對於硬度有明顯的效果,而不同雷射功率再熔後產生的硬度數值經壓痕硬度機測試,則以雷射功率30%硬度最佳,而雷射功率50%為最差。且再熔處理對於耐磨耗性能也有明顯的效果,在連續雷射模式下,雷射功率30%進行再熔處理能達到最佳的耐磨耗性能,而在耐腐蝕實驗結果中,發現碳化鎢塗層鍍膜明顯有助於提升Ti-6Al-4V基材的耐腐蝕性質,經過再熔處理後則是以雷射功率40%達到最佳的耐腐蝕狀態。由熱傳導係數實驗結果來看,經過噴覆碳化鎢塗層鍍膜後提升了Ti-6Al-4V整體的熱傳導性質。
In this study, the first step is the election of substrates and comparison, and then the tungsten carbide coating was applied to the titanium alloy substrate by the high-velocity flame spraying method, and the experiments on mechanical and physical properties, corrosion resistance, and thermal conductivity. Laser remelting is expected to improve the hardness, wear resistance, corrosion resistance, and thermal conductivity of tungsten carbide coatings. After adjusting with different laser power parameters, compare there with the differences in performance.
[1] 寧聰琴、周玉, “醫用鈦合金的發展及研究現狀”, 材料科學與工藝,第10期,第100-106頁,2002.
[2] Homepage of Keith Titanium:
https://www.keithti.com.tw/blogs/news/61042.(avilable on June 2022)
[3] M.B. Nek, A.D. Ski, and A.K. Impel, “Structure and properties of hot-work tool steel alloyed by WC carbides by a use of high power diode laser,” Journal of Achievements in Materials and Manufacturing Engineering, Vol. 24, pp. 175-178, 2007.
[4] K.M. Doleker, “The examination of microstructure and thermal oxidation behavior of laser-remelted High-Velocity Oxygen Liquid Fuel Fe/Al coating,” Journal of Materials Engineering and Performance, Vol. 29, pp. 3220-3232, 2020.
[5] C.P. Renato, A.C.C. Oliveira, M. Pereira, and R. Francisco, “Study of the effects of the laser remelting process on the microstructure and properties of the WC–10Co–4Cr coating sprayed by HVOF,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 42, pp. 119-125, 2020.
[6] H. Chen, C. Xu, Q. Zhou, I.M. Hutchings, P.H. Shipway, and J. Liu, “Micro-scale abrasive wear be haviour of HVOF sprayed and laser remelt conventional and nanostructure WC-Co coatings,” Wear, Vol. 258, pp. 333-338, 2005.
[7] C.J. Li, Y.Y. Wang, G.J. Yang, A.O. Nori, and K.A. Khor, “Effect of solid carbide particle size on deposition behavior, microstructure and wear performance of HVOF cermet coatings,” Materials Science and Technology, Vol. 20, pp. 1087-1096, 2013.
[8] M.S. An, “Microstructure, wear and corrosion properties of HVOF sprayed thermal spray coatings,” Journal of Materials Science & Surface Engineering, Vol. 5(1), pp 509-519, 2017.
[9] J.A. Picas, Y.X. Ng, M.P. Unset, L.A. Jn, A.F. Na, and J.M.S. Ng, “Microstructure and wear resistance of WC-Co by three consolidation processing techniques,” International Journal of Refractory Metals & Hard Materials, Vol.27, pp. 344-349,2009.
[10] Material of engine compressor blade turntable Titanium alloy species: https://blog.xuite.net/tyzzshuhwu/blog/44415517/track.(available on June 2022)
[11] M.L. Lin, and T.C. Yang, “Development of AMS4911 Ti-6Al-4V titanium plates,” Chinese Society of Mining and Metallurgical Engineering, Vol. 62(3), pp.78-85,2018.
[12] M. Afzal, M. Ajmal, A.N. Khan, A. Hussain, and R. Akhter, “Surface modification of air plasma spraying WC–12% Co cermet coating by laser melting technique,” Optics & Laser Technology, Vol. 56, pp. 202-206, 2014.
[13] H. Chen and I.M. Hutchings, “Abrasive wear resistance of plasma-sprayed tungsten carbide–cobalt coatings,” Surface and Coatings Technology, Vol. 107, pp. 106-114, 1998.
[14] A.S. Nov, P.K. Lu, R.T. Be, V.M. Li, H.S. As, and J.L. Tano, “Wear resistance of laser remelted thermally sprayed coatings,” Estonian Journal of Engineering, Vol. 15, pp. 318-328, 2009.
[15] 蕭威典, “熔射覆膜技術,”全華出版社,台灣,2006.
[16] 廖文祺, “碳化鎢薄膜應用於高溫太陽能吸收器之製程研究,”國立成功大學航空太空工程學系碩士論文,台南,2013.
[17] A.G. Ario, M. Puopolo, S.V. Ci, and F.V. Ali, “Improvement of thermally sprayed WC–Co/Ni Cr coatings by surface laser processing,” Int. Journal of Refractory Metals and Hard Materials, Vol. 52, pp. 123-130, 2015.
[18] F. Tsubo, A. Era, and A.K. Shitake, “Corrosion resistance of Fe-Cr-Mo(C,B, P) amorphous coatings thermally sprayed by HVOF coating and APS processes,” Proceedings of the international thermal spray conference, Vol. 46, pp. 80-83, 2005.
[19] P.N. Marcelino, C.S. Renato, M.M. Ivancy, L.P. Walter and J.V. Herman“Effects of tungsten carbide thermal spray coating by HP/HVOF and hard chromium electroplating on AISI 4340 high strength steel,” Surface and Coatings Technology, Vol. 138, pp.113-124,2001.
[20] 劉啟躍、王文健、何成剛, “摩擦學基礎與應用,”西南交通大學出版社,成都,2015.
[21] 溫詩鑄、黃平, “摩擦學原理(第三版),”清華大學出版社,北京,2008.
[22] Corrosion resistance of Titan Innovation:
https://www.titan-innovation.com/corrosion.(available on June 2022)
[23] 葉俊傑, “高速火焰熔射碳化鎢/鈷塗層之特性研究,”國立逢甲大學材料科學與工程研究所碩士論文,台中,2003.
[24] Homepage of CHUNYU BIOTECH:
https://www.chunyubio.com/product/82/87.(available on June 2022)
[25] Products of LIDINCO:
https://lidinco.com/en/product/mitutoyo-hm-122-digital-micro-hardness-tester-vickersknoop-2.(available on June 2022)
[26] 陳明煌,“碳化鎢及鈷粒子強化銅基複合材料耐磨耗腐蝕性質之研究,國立中央大學機械工程研究所碩士論文,台中,2001.
[27] Products of BAHENS:
http://www.bai20.com/Product-202.html.(available on June 2022)
[28] M. Afzal, A.N. Khan, T. B Mahmud, T.I. Khan, and M. Ajmal, “Effect of laser melting on plasma sprayed WC-12 wt.% Co coatings,” Surface & Coatings Technology, Vol. 266, pp. 22-30, 2015.
[29] ASTM Standard SAE J 417, Hardness Conversion Table by NBK,1983 revise.
[30] H.G. El, “The wear and corrosive-wear response of tungsten carbide-cobalt hard metals under woodcutting and three body abrasion conditions” Doctoral, Vol.10, pp.28-31,2002.
[31] Homepage of NETZSCH:
https://analyzing-testing.netzsch.com/en/products/thermaldiffusivity-
and-conductivity/lfa-467-ht-hyper-flash.(available on June 2022)
[32] ASTM Standard E1461-13, Standard Test Method for Thermal Diffusivity by the Flash Method, ASTM.
[33] B.I. Is, and A.K. Li, “The prediction of surface temperature in drilling of Ti-6Al-4V,” Archives of Metallurgy and Materials, Vol.59, pp. 468-469, 2013.
[34] H.C. Chen, A.J. Pinkerton, and L. Li, “Fiber laser welding of dissimilar alloys of Ti-6Al-4V and Inconel 718 for aerospace applications,” The International Journal of Advanced Manufacturing Technology, Vol.52, pp. 977-987, 2011.
[35] S. Kamnis, S. Gu, and M. Vardavoulias“Numerical study to examine the effect of porosity on in-flight particle dynamics,” Journal of Thermal Spray Technology, Vol.20(3), pp.630-637,2011.