簡易檢索 / 詳目顯示

研究生: 陳莤詒
Chen, Su-Yi
論文名稱: 量子通道搜尋
Quantum Channel Search
指導教授: 林敏雄
Lin, Matthew M.
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 41
中文關鍵詞: 量子通道Stiefel 流形正交限制梯度流牛頓法擬瞬態連續法
外文關鍵詞: quantum channel, Stiefel manifold, orthogonality constraint, gradient flow, Newton's method, Pseudo-transient Continuation
相關次數: 點閱:21下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇文章主要探討一個源自量子通道搜尋,並且具有正交約束的最佳化問題。給定一對具有單位跡且對稱正定的量子態,我們的目標是尋找一個正交轉換,使得給定的輸入態能夠映射至對應的輸出態。此問題可被建構為在Stiefel 流形上求解的最小化問題。為求解此問題,我們採用並比較三種黎曼最佳化方法:黎曼梯度流、黎曼牛頓法,以及擬瞬態連續法。數值實驗顯示,三種方法皆能有效將黎曼梯度範數下降到零,表明其收斂至一個臨界點。其中,擬瞬態連續法在穩定性、準確性與計算效率之間展現出良好的平衡,為此類問題提供了一個實用的求解策略。

    In this paper, we study an orthogonality-constrained optimization problem motivated by quantum channel search. Given a pair of symmetric positive definite quantum states with unit trace, the objective is to determine an orthogonal transformation that maps the input state to the output state. This task is formulated as minimizing the Frobenius norm of their difference, subject to orthogonality constraints on the Stiefel manifold. To solve this problem, we employ and compare three Riemannian optimization methods: Riemannian gradient flow, Riemannian Newton's method, and pseudo-transient continuation. Numerical experiments demonstrate that all methods successfully drive the Riemannian gradient norm to near zero, indicating convergence to stationary points. Among these approaches, the pseudo-transient continuation method achieves a favorable balance between stability, accuracy, and computational efficiency.

    摘要 i Abstract ii 誌謝 iii Table of Contents iv List of Tables vi List of Figures vii 1 Introduction 1 2 Preliminaries 5 3 First-Order Condition 8 4 Methodology 12 4.1 Riemannian Newton's Method 12 4.2 Riemannian Gradient Flow 17 4.3 Pseudo-Transient Continuation 19 5 Numerical Experiments 23 6 Conclusion 30 Reference 31

    [1] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information. Cambridge university press, 2010.
    [2] Nicolas Gisin and Rob Thew. Quantum communication. Nature photonics, 1(3):165171, 2007.
    [3] Daoyi Dong and Ian R Petersen. Quantum control theory and applications: a survey. IET control theory & applications, 4(12):2651–2671, 2010.
    [4] Dénes Petz. Sufficient subalgebras and the relative entropy of states of a von neumann algebra. Communications in mathematical physics, 105:123–131, 1986.
    [5] Alan Edelman, Tomás A Arias, and Steven T Smith. The geometry of algorithms with orthogonality constraints. SIAM journal on Matrix Analysis and Applications, 20(2):303–353, 1998.
    [6] Moody T Chu and Kenneth R Driessel. The projected gradient method for least squares matrix approximations with spectral constraints. SIAM Journal on Numerical Analysis, 27(4):1050–1060, 1990.
    [7] P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds. In Optimization Algorithms on Matrix Manifolds. Princeton University Press, 2009.
    [8] Nicolas Boumal. An introduction to optimization on smooth manifolds. Cambridge University Press, 2023.
    [9] Carl Timothy Kelley and David E Keyes. Convergence analysis of pseudo-transient continuation. SIAM Journal on Numerical Analysis, 35(2):508–523, 1998.
    [10] Wim A Mulder and Bram Van Leer. Experiments with implicit upwind methods for the euler equations. Journal of Computational Physics, 59(2):232–246, 1985.
    [11] CT Kelley, Li-Zhi Liao, Liqun Qi, Moody T Chu, Jill P Reese, and C Winton. Projected pseudotransient continuation. SIAM Journal on Numerical Analysis, 46(6):3071–3083, 2008.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE