| 研究生: |
倪冠雲 Ni, Guan-Yun |
|---|---|
| 論文名稱: |
接受與迴避社群媒體個人化廣告之影響因素—以Facebook為例 Affecting Factors on Acceptance and Avoidance of Personalized Advertising in Social Media: Using Facebook as an Example |
| 指導教授: |
蔡東峻
Tsai, Dung-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 電信管理研究所 Institute of Telecommunications Management |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 社群媒體 、個人化廣告 、隱私 、廣告接受 、廣告迴避 |
| 外文關鍵詞: | Social Media, Personalized Advertising, Privacy, Ad Acceptance, Ad Avoidance |
| 相關次數: | 點閱:158 下載:40 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
個人化廣告能讓閱聽人接觸到更符合其需求之廣告內容,而社群媒體便是透過免費使用服務並投放個人化廣告的商業模式來獲得營收。但使用了許多個人隱私資料來進行個人化的廣告,可能會帶給平台使用者隱私遭受侵入之感受。因此,本研究希望瞭解個人化廣告如何因為過度個人化而導致使用者意識到隱私遭受侵入,並透過衡量廣告對於使用者之價值與廣告造成使用者不耐煩及不悅之感受,進而瞭解使用者如何選擇接受或是迴避社群媒體平台上的個人化廣告。
本研究以資訊性、娛樂性、知覺個人化及隱私侵入作為廣告價值及惱怒之前因,探討這四個變數如何影響使用者對於個人化廣告的評估價值及其造成的不耐煩感受。接下來則以廣告接受與廣告迴避作為使用者衡量過廣告價值及惱怒後的反應。本研究採用網路問卷,於2021年4月初完成問卷回收工作,最終有效問卷為627份,並以SEM作為研究分析方法。
研究結果表明,廣告惱怒為影響使用者決定接受或迴避廣告最重要的因素。而除了隱私侵入能最大的影響廣告惱怒外,提高娛樂性亦能有效降低廣告惱怒。另一方面,廣告價值很大程度的受到知覺個人化的影響,且資訊性也能有效提高廣告價值。此外,本研究亦採用了分群分析,結果顯示使用Facebook的時間長短將會產生不同的影響。最終根據分析結果進行討論,並提供社群媒體業者在實務管理上以及未來學術研究上的建議。
Personalized advertising allows viewers to access advertising content that better meets their needs, and social media platforms earns revenue through the business model of free use of services and placement of personalized advertising. However, a lot of personal privacy information is used for personalized advertising, which may give platform users a feeling of privacy invasion. Therefore, this study aims to investigate how personalized advertisements are over-personalized and end up causing users to perceive their privacy been invaded. By evaluating the value of advertisements to users and user’s impatient and unpleasant feelings caused by advertisements, we can realize how users decide to accept or avoid personalized advertisements on social media platforms.
This study adopts informativeness, entertainment, perceived personalization, and privacy invasion as the causes of ad value and ad irritation, and investigates how these four variables affect users' evaluating the value of personalized advertising and users’ reaction caused by their impatient feelings. Next, ad acceptance and ad avoidance are used to identify user's reaction after evaluating the value of the advertisement and being irritated. Online questionnaire is implemented for this study. The questionnaire collection is completed in early April 2021. The total valid questionnaires are 627, and SEM is adopted as the research and analysis method.
The results show that ad irritation is the most important factor influencing users' decision to accept or avoid advertising. Privacy invasion has the greatest influence on ad irritation while improving entertainment can effectively reduce ad irritation. Besides, ad value is largely affected by users’ perceived personalization, and informativeness can also effectively increase ad value as well. In addition, this research also adopts group analysis. The result shows that how long users spend on Facebook have different effects. Following the results and analysis, suggestions are proposed for social media platforms on practical management and some areas for future research are provided as well.
Facebook. (2020, 2020/8/21). Data Policy. Retrieved from https://www.facebook.com/privacy/explanation
自由電子報 (2020)。推特現資安漏洞?受害者帳號增加中、股價一度大跌4% - 自由財經。2020年10月19日取自自由時報電子報:https://ec.ltn.com.tw/article/breakingnews/3230066
林妍溱 (2018)。臉書陷資料外洩疑雲? 5000萬名美國用戶資料遭第三方業者非法濫用。2020年10月19日取自iThome:https://www.ithome.com.tw/news/121879
林奇賢 (2020)。數位信任調查 臉書敬陪末座 比Tik Tok還差。2020年10月19日取自聯合新聞網:https://udn.com/news/story/7088/4886625
美股研究社 (2020)。解讀FacebookQ4財報:淨利潤下滑嚴重,營收超預期背後危機重重。2020年10月20日取自數位時代:https://www.tmtpost.com/4239343.html
康健寧 (2018)。過度個人化令人毛骨悚然。2020年10月20日取自動腦新聞:https://www.brain.com.tw/news/articlecontent?ID=46928
台灣數位媒體應用行銷協會 (2020)。DMA2019年台灣數位廣告量統計報告。2020年8月20日取自:http://www.dma.org.tw/trend
Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate Data Analysis.
Baek, T. H., & Morimoto, M. (2012). Stay away from me. Journal of advertising, 41(1), 59-76.
Bang, H., Choi, D., Wojdynski, B. W., & Lee, Y. I. (2019). How the level of personalization affects the effectiveness of personalized ad messages: The moderating role of narcissism. International Journal of Advertising, 38(8), 1116-1138.
Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS quarterly, 351-370.
Chen, P.-T., & Hsieh, H.-P. (2012). Personalized mobile advertising: Its key attributes, trends, and social impact. Technological Forecasting and Social Change, 79(3), 543-557.
Cho, C. H., & Cheon, H. J. (2004). Why do people avoid advertising on the Internet? Journal of advertising, 33(4), 89-97.
Choi, B. C. F., Jiang, Z., Xiao, B., & Kim, S. S. (2015). Embarrassing exposures in online social networks: An integrated perspective of privacy invasion and relationship bonding. Information Systems Research, 26(4), 675-694.
Dao, W. V.-T., Le, A. N. H., Cheng, J. M.-S., & Chen, D. C. (2014). Social media advertising value: The case of transitional economies in Southeast Asia. International Journal of Advertising, 33(2), 271-294.
Ducoffe, R. H. (1995). How consumers assess the value of advertising. Journal of Current Issues & Research in Advertising, 17(1), 1-18.
Ducoffe, R. H. (1996). Advertising value and advertising on the web. Journal of advertising research, 36(5), 21-21.
Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Los Angeles, CA: Sage Publications.
Ha, Y. W., Park, M.-C., & Lee, E. (2014). A framework for mobile SNS advertising effectiveness: User perceptions and behaviour perspective. Behaviour & Information Technology, 33(12), 1333-1346.
Hallam, C., & Zanella, G. (2017). Online self-disclosure: The privacy paradox explained as a temporally discounted balance between concerns and rewards. Computers in Human Behavior, 68, 217-227.
Huo, H., Liu, Z., & Min, Q. (2020). Social media advertising reactance model: A theoretical review. Internet Research.
Ketelaar, P. E., Bernritter, S. F., van Woudenberg, T. J., Rozendaal, E., Konig, R. P., Hühn, A. E., . . . Janssen, L. (2018). “Opening” location-based mobile ads: How openness and location congruency of location-based ads weaken negative effects of intrusiveness on brand choice. Journal of Business Research, 91, 277-285.
Kim, T., Barasz, K., John, L. K., Fischer, E., & Morales, A. (2019). Why am i seeing this ad? The effect of ad transparency on ad effectiveness. Journal of consumer research, 45(5), 906-932.
Kim, Y. J., & Han, J. (2014). Why smartphone advertising attracts customers: A model of Web advertising, flow, and personalization. Computers in Human Behavior, 33, 256-269.
Li, C., Liu, J., & Hong, C. (2019). The effect of preference stability and extremity on personalized advertising. Journalism & Mass Communication Quarterly, 96(2), 406-427.
Morimoto, M. (2020). Privacy concerns about personalized advertising across multiple social media platforms in Japan: The relationship with information control and persuasion knowledge. International Journal of Advertising, Early Access, 21.
Mpinganjira, M., & Maduku, D. K. (2019). Ethics of mobile behavioral advertising: Antecedents and outcomes of perceived ethical value of advertised brands. Journal of Business Research, 95, 464-478.
Nunnally, J. C. (1978). Psychometric Theory: McGraw-Hill.
Ozcelik, A. B., & Varnali, K. (2019). Effectiveness of online behavioral targeting: A psychological perspective. Electronic Commerce Research and Applications, 33, 100819.
Sweeney, J. C., & Soutar, G. N. (2001). Consumer perceived value: The development of a multiple item scale. Journal of retailing, 77(2), 203-220.
Tolchinsky, P. D., McCuddy, M. K., Adams, J., Ganster, D. C., Woodman, R. W., & Fromkin, H. L. (1981). Employee perceptions of invasion of privacy: A field simulation experiment. Journal of Applied Psychology, 66(3), 308-313.
Tran, T. P. (2017). Personalized ads on Facebook: An effective marketing tool for online marketers. Journal of Retailing and Consumer Services, 39, 230-242.
Tucker, C. E. (2013). Social networks, personalized advertising, and privacy controls. Journal of Marketing Research, 51(5), 546-562.
Yu, C., Zhang, Z., Lin, C., & Wu, Y. J. (2020). Can data-driven precision marketing promote user AD clicks? Evidence from advertising in WeChat moments. Industrial Marketing Management, 90, 481-492.
Zhu, Y.-Q., & Chang, J.-H. (2016). The key role of relevance in personalized advertisement: Examining its impact on perceptions of privacy invasion, self-awareness, and continuous use intentions. Computers in Human Behavior, 65, 442-447.