簡易檢索 / 詳目顯示

研究生: 莊詠鈞
Chuang, Yung-Chun
論文名稱: 探討巨噬細胞移動抑制因子及凝血相關自體抗體在登革病毒感染之致病機轉
Study on the pathogenesis of macrophage migration inhibitory factor and coagulation-related autoantibodies during dengue virus infection
指導教授: 葉才明
Yeh, Trai-Ming
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 130
中文關鍵詞: 登革病毒細胞激素自體抗體
外文關鍵詞: Dengue virus, cytokine, autoantibody
相關次數: 點閱:96下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 登革病毒(Dengue Virus, DENV)感染會造成輕微的登革熱(Dengue Fever, DF)和較嚴重之登革出血熱(Dengue Hemorrhagic Fever, DHF)或登革休克症候群(Dengue Shock Syndrome, DSS)。DHF/DSS臨床主要會有血管滲漏(Vascular Leakage)或是出血的症狀發生。對於DENV感染造成DHF/DSS有許多的假說,包括抗體依賴性增強作用及細胞激素的過度活化等;此外,DENV所誘導的自體抗體亦可能參與在致病機轉。在先前的研究中,我們發現登革病患血清中巨噬細胞移動抑制因子(Macrophage migration inhibitory factor, MIF)的表現量與登革病患嚴重程度呈現正相關; 而在MIF基因剔除的小鼠感染DENV後,其病毒複製及血液濃縮的現象比正常小鼠輕微,顯示MIF可能與DENV所造成的血管通透性上升或病毒之複製有關。我們利用MIF重組蛋白或DENV感染的細胞上清液發現MIF能夠促進血管內皮細胞通透性增加,主要是透過上升細胞表面受體CD74及CXCR2/4來影響細胞間緊密連接蛋白ZO-1的分布。動物模式也證實MIF可以促進小鼠腹腔及背部皮下血管通透性的上升。此外,細胞自噬作用(Autophagy)被證實可作用DENV複製的平台,而發炎性細胞激素也被認為可以誘導自噬作用的產生。因此,我們利用重組蛋白來探討MIF在細胞自噬的作用。實驗結果顯示MIF可以透過活性氧化物(Reactive oxygen species, ROS)的產生來誘導細胞自噬;在養分缺乏下誘導的細胞自噬,MIF也會受到ROS的產生而分泌,顯示MIF與ROS之間可以互相調控,進而參與在細胞自噬。此外,MIF、ROS 及細胞自噬在DENV病毒感染時都會上升。當MIF或是ROS被抑制的情況下,細胞自噬以及病毒的複製也會隨之受到抑制。這些結果顯示在DENV感染所誘導的MIF可能參與在血管通透性及DENV複製的調控。
    在出血機轉的研究中,先前研究已證實DENV感染會誘導與凝血因子相關的自體抗體。然而,這些抗體對凝血機轉有甚麼影響並不清楚。我們利用DENV免疫小鼠製造單株抗體,並篩選出幾株能夠交叉辨識到纖溶酶原(Plasminogen, Plg)的抗體。其中單株抗體6H11具有絲氨酸蛋白酶(Serine protease)的酵素活性,能夠直接活化Plg或是促進尿素激酶(Urokinase)所誘發的Plg活化。此外,我們發現DENV也能誘導和其他凝血因子如凝血酶(Thrombin)或凝血酶原(Prothrombin)結合的自體抗體。因此,我們從兔子免疫或登革病患的血清中純化出對抗Thrombin的抗體。我們發現這些抗體除了能夠抑制Thrombin的活性之外,也能夠具有類似單株抗體6H11的功能來直接或促進Plg的活化。另一方面,我們也發現單株抗體6H11也能夠辨識到Thrombin並干擾其活性。因此,DENV感染所誘導的抗體可能具有抑制凝血及促進纖溶作用的功能。在疫苗的發展上,可能要避開這些抗體的抗原決定位,以免產生自體抗體而影響凝血作用。

    Dengue virus (DENV) infection can cause dengue fever (DF), severed dengue hemorrhage fever (DHF), or dengue shock syndrome (DSS). DHF/DSS patients have symptoms such as vascular leakage and hemorrhage. There are several hypotheses for why DHF/DSS occurs after DENV infection such as antibody-dependent enhancement and cytokines over activation. In addition, DENV-induced autoantibodies might also participate in the pathogenesis of DHF/DSS. In previous study, we found the sera levels of macrophage migration factor (MIF) in dengue patients are correlated with disease severity. In MIF knockout mice, the viral replication and hemoconcentraction are reduced after DENV infection, as compared with wild type mice. This information indicated MIF might play a role in vascular permeability and viral replication. We used MIF recombinant protein and DENV-infected cell supernatant in this study and found MIF could bind to surface receptors CD74 and CXCR2/4 and enhance vascular permeability through disrupt tight junction protein ZO-1 distribution. We also proved injection of MIF into mice could enhance the vascular permeability in vivo. In addition, autophagy has been shown to be involved in DENV replication. Proinflammatory cytokines are also considered to be able to induce autophagy. Therefore, we used recombinant MIF protein to investigate the role of MIF in autophagy. Our data indicated that MIF could induce autophagy of human hepatoma cell line HuH-7 cells though reactive oxygen species (ROS) generation. MIF was also secreted in nutrient depletion-induced autophagy which is ROS dependent. These results indicate MIF and ROS can regulate each other and participate in autophagy. In addition, MIF, ROS, and autophagy are also upregulated during DENV infection of HuH-7 cells. When MIF or ROS was inhibited, autophagy and viral replication were both inhibited. These data suggest MIF induced by DENV infection may participate in regulation of both vascular permeability and DENV replication. Therefore, MIF inhibitor may have both anti-inflammatory and anti-viral effects against DENV infection.
    DENV-induced coagulation-related autoantibodies have been suggested to be involved in the mechanism to cause hemorrhage. However, the exact mechanisms of these antibodies to cause coagulation dysfunction are unclear. In this study, we used DENV-immunized mice to generate monoclonal antibodies (mAbs), and screened out several clones which could cross-react to Plasminogen (Plg) and enhanced its activation or enhance urokinase-induced Plg activation. Among them, mAb 6H11 showed the best activity of seine protease. In addition, we found DENV can also induce autoantibodies which could bind to other coagulation factors such as thrombin or prothrombin. Thus, we purified anti-thrombin antibodies from both DENV immunized rabbit sera and dengue patients’ sera. We found these anti-thrombin antibodies not only inhibited thrombin activity, but also shows similar function as mAb 6H11 to enhance Plg activation directly or indirectly. On other hand, we also found mAb 6H11 could also recognize thrombin and interfere its activity. Hence, antibodies-induced by DENV infection may inhibit coagulation or enhance fibrinolysis. In vaccine development, the epitopes recognized by these autoantibodies should be avoided to prevent possible side effect on coagulation.

    Chinese Abstract….………………………………………………………………...I English Abstract………………………………………………………………….III Acknowledgments.……………………………………………………………….V Table of Contents………………………………………………………………...VII List of Figures…………………………………………………………………..XIII List of Abbreviations……………………………………………………...........XVI 1. Introduction…………………………………………………………………….1 1.1 DENV genome and structure…………………………………………...…1 1.1.1 Genome and RNA structure……………………………………….1 1.1.2 Viral structure and protein………………………………………...2 1.2 DENV infection…………………………………………………………..…4 1.2.1 Receptors…………………………………………………………….4 1.2.2 DENV-induced autophagy………………………………………….5 1.2.3 Clinical classification and manifestations…………………………6 1.3 Hypothesis of DHF/DSS……………………………………………………7 1.3.1 Antibody-dependent enhancement……………………...…………7 1.3.2 Complement activation and cytokine-mediated pathogenesis…...8 1.3.3 Immunopathogenesis and autoimmunity………………………….9 1.4 Macrophage migration inhibitory factor (MIF)………………………...10 1.4.1 Function and receptors……………………………………………10 1.4.2 Role of MIF in infectious diseases………………………………...11 1.5 Abnormal coagulation in DENV patients……………………………….12 1.5.1 Coagulation………………………………………………………...12 1.5.2 Abnormal coagulation in DENV patients……..………………....13 1.5.3 Molecular mimicry between DENV and coagulation factors…..13 2. Specific Aims and Experimental Designs……………………………………15 3. Materials and Methods…………………………………………………….…18 3.1 Materials…………………………………………………………………..18 3.1.1 Antibodies and ELISA Kits……………………………………….18 3.1.2 Regents……………………………………………………………..19 3.1.3 Plasmid……………………………………………………………..21 3.1.4 Consumables and devices…………………………………………22 3.2 Methods……………………………………………………………………23 3.2.1 Cells and cell culture………………………………………………23 3.2.2 Preparation of virus stocks, titration and infection……………..23 3.2.3 Gene silencing via short hairpin RNA……………………………24 3.2.4 Recombinant MIF protein………………………………………...25 3.2.5 Western blotting…………………………………………………...25 3.2.6 Function assays of rMIF…………………………………………..26 3.2.7 ELISA……………………………………………………………....26 3.2.8 Inhibitors and treatment………………………………………….27 3.2.9 Immunofluorescent staining………………………………………28 3.2.10 Permeability assays………………………………………………..29 3.2.11 Reverse-transcription PCR (RT-PCR)…………………………...30 3.2.12 LC3-EGFP and ptfLC3 fluorescent assay………………………..30 3.2.13 Nitric oxide (NO), hydrogen peroxide (H2O2), and superoxide detection……………………………………………………………31 3.2.14 Mitochondrial membrane potential (MMP) assay………………32 3.2.15 Patients’ sera……………………………………………………….32 3.2.16 Antibodies generation and epitope mapping…………………….32 3.2.16.1 Generation of polyclonal antibodies…………………….32 3.2.16.2 Generation of monoclonal antibodies…………………...33 3.2.16.3 Epitope mapping using phage-displayed random peptide ……………………………………………………..……33 3.2.17 Plm formation assay…………………………………………….…34 3.2.18 Fibrinogen (Fbg) cleavage analysis……………………………....35 3.2.19 Chromogenic assay of thrombin, Plm, and serine protease activity……………………………………………………………...35 3.2.20 Thrombin time (TT) assay………………………………………...36 3.2.21 Fibrin formation and clot lysis assay……………………………..36 3.2.22 Measurement of Plm and thrombin activity in mice……………37 3.2.23 Statistical analysis………………………………………………....37 4. Results…………………………………………………………………………38 4.1 Pathogenic role of MIF in DENV infection……………………………...38 4.1.1 MIF contributes to vascular permeability increase during DENV infection…………………………………………………………….38 4.1.1.1 DENV infection enhances MIF secretion in HuH-7 cells….38 4.1.1.2 Expression and purification of functional rMIF………..…38 4.1.1.3 DENV-induced MIF enhances vascular permeability of endothelial cells during infection…………………………...39 4.1.1.4 MIF disarrays ZO-1 distribution in HMEC-1 cells………40 4.1.1.5 MIF enhances vascular permeability in mice……………..41 4.1.2 MIF is involved in autophagy and DENV replication…………...42 4.1.2.1 rMIF induces autophagy in human hepatoma cells………..42 4.1.2.2 rMIF stimulates ROS generation and causes mitochondrial membrane potential (MMP) loss……………………………43 4.1.2.3 Serum-starvation induces MIF secretion…………………...44 4.1.2.4 Serum starvation-induced ROS generation and autophagy formation are inhibited by MIF inhibitors, ISO-1…………45 4.1.2.5 MIF depletion reduces serum starvation-induced ROS generation and MMP loss……………………………………45 4.1.2.6 Depletion of endogenous MIF reduces starvation-induced Autophagy…………………………………………………….46 4.1.2.7 MIF inhibition reduces DENV-induced ROS generation….46 4.1.2.8 MIF inhibition reduces DENV-induced autophagy and Replication……………………………………………………47 4.2 Pathogenic role of autoantibodies in DENV infection………………….48 4.2.1 Autoantibodies against Plasminogen (Plg) in DENV infection…48 4.2.1.1 Autoantibodies cross-react to Plg in DENV patients’ and immunized mice sera………………………………………...48 4.2.1.2 Generation and characterization of Plg cross-reactive dengue mAb…………………………………………………..48 4.2.1.3 Epitope mapping of Plg cross-reactive monoclonal antibody 6H11…………………………………………………………...49 4.2.1.4 Inhibition of mAb 6H11 and dengue patient’ sera binding to Plg by phage…………………………………………………..49 4.2.1.5 Plg cross-reactive mAb induce Plg activation and show serine protease activity………………………………………50 4.2.1.6 Human Plm conversion, Fbg cleavage, and D-dimer formation induced by Plg cross-reactive mAbs…………….51 4.2.1.7 Plm activity and D-dimer formation induced by 6H11 mAb in vivo………………………………………………………….52 4.2.2 Autoantibodies against thrombin in DENV infection…………...52 4.2.2.1 DENV infection elicits autoantibodies against human thrombin and prothrombin………………………………….52 4.2.2.2 DENV immunization elicits autoantibodies cross-react to several coagulation factors…………………………………..53 4.2.2.3 Characterization of anti-thrombin antibodies (ATA)……..53 4.2.2.4 Both rabbit and human ATA inhibit thrombin activity……54 4.2.2.5 ATA enhance Plg activation and fibrinolysis…………….…54 4.2.2.6 Mab 6H11 shows cross-reactivity to both thrombin and Plg………………………………………………………..……55 4.2.2.7 Mab 6H11 inhibits thrombin activity and enhance clot Lysis.…………………………………………………………..55 4.2.2.8 Potential binding sites of mAb 6H11 to thrombin……….....56 4.2.2.9 Rabbit ATA inhibit thrombin activity and enhance fibrinolysis in mice…………………………………………...56 5. Discussion……………………………………………………………………...58 5.1 Pathogenic role of MIF in DENV infection……………………………...58 5.1.1 MIF-induced by DENV infection enhances permeability……....58 5.1.2 MIF is involved in autophagy and DENV replication…………...62 5.2 Pathogenic role of autoantibodies in DENV infection………………….64 5.2.1 The pathogenic role of autoantibodies against Plg………………64 5.2.2 The pathogenic role of autoantibodies against thrombin...……..67 6. Conclusion……………………………………………………………………..69 7. Reference………………………………………………………………………70 8. Figures and Figure legends…………………………………………………...90

    Al-Abed, Y., Dabideen, D., Aljabari, B., Valster, A., Messmer, D., Ochani, M., . . . Tracey, K. J. (2005). ISO-1 binding to the tautomerase active site of MIF inhibits its pro-inflammatory activity and increases survival in severe sepsis. J Biol Chem, 280(44), 36541-36544
    Arjona, A., Foellmer, H. G., Town, T., Leng, L., McDonald, C., Wang, T., . . . Bucala, R. (2007). Abrogation of macrophage migration inhibitory factor decreases West Nile virus lethality by limiting viral neuroinvasion. J Clin Invest, 117(10), 3059-3066
    Assuncao-Miranda, I., Amaral, F. A., Bozza, F. A., Fagundes, C. T., Sousa, L. P., Souza, D. G., . . . Bozza, M. T. (2009). Contribution of macrophage migration inhibitory factor to the pathogenesis of dengue virus infection. FASEB J
    Assuncao-Miranda, I., Amaral, F. A., Bozza, F. A., Fagundes, C. T., Sousa, L. P., Souza, D. G., . . . Bozza, M. T. (2010). Contribution of macrophage migration inhibitory factor to the pathogenesis of dengue virus infection. FASEB J, 24(1), 218-228
    Avirutnan, P., Fuchs, A., Hauhart, R. E., Somnuke, P., Youn, S., Diamond, M. S., & Atkinson, J. P. (2010). Antagonism of the complement component C4 by flavivirus nonstructural protein NS1. J Exp Med, 207(4), 793-806
    Avirutnan, P., Hauhart, R. E., Somnuke, P., Blom, A. M., Diamond, M. S., & Atkinson, J. P. (2011). Binding of flavivirus nonstructural protein NS1 to C4b binding protein modulates complement activation. J Immunol, 187(1), 424-433
    Azad, M. B., Chen, Y., & Gibson, S. B. (2009). Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid Redox Signal, 11(4), 777-790
    Baugh, J. A., & Bucala, R. (2002). Macrophage migration inhibitory factor. Crit Care Med, 30(1 Supp), S27-S35
    Bernhagen, J., Calandra, T., Mitchell, R. A., Martin, S. B., Tracey, K. J., Voelter, W., . . . Bucala, R. (1993). MIF is a pituitary-derived cytokine that potentiates lethal endotoxaemia. Nature, 365(6448), 756-759
    Bernhagen, J., Krohn, R., Lue, H., Gregory, J. L., Zernecke, A., Koenen, R. R., . . . Weber, C. (2007). MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med, 13(5), 587-596
    Bloom, B. R., & Bennett, B. (1966). Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science, 153(731), 80-82
    Bokisch, V. A., Top, F. H., Jr., Russell, P. K., Dixon, F. J., & Muller-Eberhard, H. J. (1973). The potential pathogenic role of complement in dengue hemorrhagic shock syndrome. N Engl J Med, 289(19), 996-1000
    Bozza, M., Satoskar, A. R., Lin, G., Lu, B., Humbles, A. A., Gerard, C., & David, J. R. (1999). Targeted disruption of migration inhibitory factor gene reveals its critical role in sepsis. J Exp Med, 189(2), 341-346
    Brinkworth, R. I., Fairlie, D. P., Leung, D., & Young, P. R. (1999). Homology model of the dengue 2 virus NS3 protease: putative interactions with both substrate and NS2B cofactor. J Gen Virol, 80 ( Pt 5), 1167-1177
    Cabrera-Hernandez, A., Thepparit, C., Suksanpaisan, L., & Smith, D. R. (2007). Dengue virus entry into liver (HepG2) cells is independent of hsp90 and hsp70. J Med Virol, 79(4), 386-392
    Cahour, A., Falgout, B., & Lai, C. J. (1992). Cleavage of the dengue virus polyprotein at the NS3/NS4A and NS4B/NS5 junctions is mediated by viral protease NS2B-NS3, whereas NS4A/NS4B may be processed by a cellular protease. J Virol, 66(3), 1535-1542
    Calandra, T., Bernhagen, J., Metz, C. N., Spiegel, L. A., Bacher, M., Donnelly, T., . . . Bucala, R. (1995). MIF as a glucocorticoid-induced modulator of cytokine production. Nature, 377(6544), 68-71
    Calandra, T., Bernhagen, J., Mitchell, R. A., & Bucala, R. (1994). The macrophage is an important and previously unrecognized source of macrophage migration inhibitory factor. J Exp Med, 179(6), 1895-1902
    Calandra, T., Echtenacher, B., Roy, D. L., Pugin, J., Metz, C. N., Hultner, L., . . . Glauser, M. P. (2000). Protection from septic shock by neutralization of macrophage migration inhibitory factor. Nat Med, 6(2), 164-170
    Calandra, T., & Roger, T. (2003). Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol, 3(10), 791-800
    Cesarman-Maus, G., & Hajjar, K. A. (2005). Molecular mechanisms of fibrinolysis. Br J Haematol, 129(3), 307-321
    Chaturvedi, U. C., Agarwal, R., Elbishbishi, E. A., & Mustafa, A. S. (2000). Cytokine cascade in dengue hemorrhagic fever: implications for pathogenesis. FEMS Immunol Med Microbiol, 28(3), 183-188
    Chen, H. C., Hofman, F. M., Kung, J. T., Lin, Y. D., & Wu-Hsieh, B. A. (2007). Both virus and tumor necrosis factor alpha are critical for endothelium damage in a mouse model of dengue virus-induced hemorrhage. J Virol, 81(11), 5518-5526
    Chen, L., Zhang, B., & Toborek, M. (2012). Autophagy is involved in nanoalumina-induced cerebrovascular toxicity. Nanomedicine
    Chen, L. C., H. W. Shyu, H. Y. Lei, S. H. Chen, H.S. Liu, Y. S. Lin, and T. M. Yeh. . (2008). Dengue virus infection induced NF-B-dependent macrophage migration inhibitory factor production. Am J Infect Dis, 4, 22-31
    Chen, L. C., Lei, H. Y., Liu, C. C., Shiesh, S. C., Chen, S. H., Liu, H. S., . . . Yeh, T. M. (2006). Correlation of serum levels of macrophage migration inhibitory factor with disease severity and clinical outcome in dengue patients. Am J Trop Med Hyg, 74(1), 142-147
    Chen, L. C., Shyu, H. W., Lin, H. M., Lei, H. Y., Lin, Y. S., Liu, H. S., & Yeh, T. M. (2009). Dengue virus induces thrombomodulin expression in human endothelial cells and monocytes in vitro. J Infect, 58(5), 368-374
    Chen, S. T., Lin, Y. L., Huang, M. T., Wu, M. F., Cheng, S. C., Lei, H. Y., . . . Hsieh, S. L. (2008). CLEC5A is critical for dengue-virus-induced lethal disease. Nature, 453(7195), 672-676
    Chen, Y., Maguire, T., Hileman, R. E., Fromm, J. R., Esko, J. D., Linhardt, R. J., & Marks, R. M. (1997). Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med, 3(8), 866-871
    Chen, Y. C., Wang, S. Y., & King, C. C. (1999). Bacterial lipopolysaccharide inhibits dengue virus infection of primary human monocytes/macrophages by blockade of virus entry via a CD14-dependent mechanism. J Virol, 73(4), 2650-2657
    Cheng, X. W., Lu, J., Wu, C. L., Yi, L. N., Xie, X., Shi, X. D., . . . He, M. L. (2011). Three fatal cases of pandemic 2009 influenza A virus infection in Shenzhen are associated with cytokine storm. Respir Physiol Neurobiol, 175(1), 185-187
    Chuang, Y. C., Lei, H. Y., Liu, H. S., Lin, Y. S., Fu, T. F., & Yeh, T. M. (2011). Macrophage migration inhibitory factor induced by dengue virus infection increases vascular permeability. Cytokine, 54(2), 222-231
    Chungue, E., Poli, L., Roche, C., Gestas, P., Glaziou, P., & Markoff, L. J. (1994). Correlation between detection of plasminogen cross-reactive antibodies and hemorrhage in dengue virus infection. J Infect Dis, 170(5), 1304-1307
    Clyde, K., Kyle, J. L., & Harris, E. (2006). Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J Virol, 80(23), 11418-11431
    Coutelier, J. P., van der Logt, J. T., & Heessen, F. W. (1991). IgG subclass distribution of primary and secondary immune responses concomitant with viral infection. J Immunol, 147(4), 1383-1386
    Crill, W. D., & Roehrig, J. T. (2001). Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J Virol, 75(16), 7769-7773
    da Silva Voorham, J. M., Rodenhuis-Zybert, I. A., Ayala Nunez, N. V., Colpitts, T. M., van der Ende-Metselaar, H., Fikrig, E., . . . Smit, J. M. (2012). Antibodies against the envelope glycoprotein promote infectivity of immature dengue virus serotype 2. PLoS One, 7(3), e29957
    Datta, S., & Wattal, C. (2010). Dengue NS1 antigen detection: a useful tool in early diagnosis of dengue virus infection. Indian J Med Microbiol, 28(2), 107-110
    Di Cera, E. (2008). Thrombin. Mol Aspects Med, 29(4), 203-254
    Dios, A., Mitchell, R. A., Aljabari, B., Lubetsky, J., O'Connor, K., Liao, H., . . . Al-Abed, Y. (2002). Inhibition of MIF bioactivity by rational design of pharmacological inhibitors of MIF tautomerase activity. J Med Chem, 45(12), 2410-2416
    Djavaheri-Mergny, M., Amelotti, M., Mathieu, J., Besancon, F., Bauvy, C., Souquere, S., . . . Codogno, P. (2006). NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. J Biol Chem, 281(41), 30373-30382
    Dong, H., Zhang, B., & Shi, P. Y. (2008). Flavivirus methyltransferase: a novel antiviral target. Antiviral Res, 80(1), 1-10
    Donnelly, S. C., & Bucala, R. (1997). Macrophage migration inhibitory factor: a regulator of glucocorticoid activity with a critical role in inflammatory disease. Mol Med Today, 3(11), 502-507
    Falconar, A. K. (1997). The dengue virus nonstructural-1 protein (NS1) generates antibodies to common epitopes on human blood clotting, integrin/adhesin proteins and binds to human endothelial cells: potential implications in haemorrhagic fever pathogenesis. Arch Virol, 142(5), 897-916
    Falgout, B., Pethel, M., Zhang, Y. M., & Lai, C. J. (1991). Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. J Virol, 65(5), 2467-2475
    Fong, J., Kells, R., Gumpert, A., Marzillier, J., Davidson, M., & Falk, M. (2012). Internalized gap junctions are degraded by autophagy. Autophagy, 8(5)
    Friebe, P., Pena, J., Pohl, M. O., & Harris, E. (2012). Composition of the sequence downstream of the dengue virus 5' cyclization sequence (dCS) affects viral RNA replication. Virology, 422(2), 346-356
    Funahara, Y., Sumarmo, Shirahata, A., & Setiabudy-Dharma, R. (1987). DHF characterized by acute type DIC with increased vascular permeability. Southeast Asian J Trop Med Public Health, 18(3), 346-350
    Funk, A., Truong, K., Nagasaki, T., Torres, S., Floden, N., Balmori Melian, E., . . . Khromykh, A. A. (2010). RNA structures required for production of subgenomic flavivirus RNA. J Virol, 84(21), 11407-11417
    Garai, J., & Lorand, T. (2009). Macrophage migration inhibitory factor (MIF) tautomerase inhibitors as potential novel anti-inflammatory agents: current developments. Curr Med Chem, 16(9), 1091-1114
    Gebhard, L. G., Kaufman, S. B., & Gamarnik, A. V. (2012). Novel ATP-independent RNA annealing activity of the dengue virus NS3 helicase. PLoS One, 7(4), e36244
    Gil, J., Almeida, S., Oliveira, C. R., & Rego, A. C. (2003). Cytosolic and mitochondrial ROS in staurosporine-induced retinal cell apoptosis. Free Radic Biol Med, 35(11), 1500-1514
    Gubler, D. J., & Clark, G. G. (1995). Dengue/dengue hemorrhagic fever: the emergence of a global health problem. Emerg Infect Dis, 1(2), 55-57
    Halstead, S. B., Lan, N. T., Myint, T. T., Shwe, T. N., Nisalak, A., Kalyanarooj, S., . . . Endy, T. P. (2002). Dengue hemorrhagic fever in infants: research opportunities ignored. Emerg Infect Dis, 8(12), 1474-1479
    Halstead, S. B., & O'Rourke, E. J. (1977a). Antibody-enhanced dengue virus infection in primate leukocytes. Nature, 265(5596), 739-741
    Halstead, S. B., & O'Rourke, E. J. (1977b). Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J Exp Med, 146(1), 201-217
    Halstead, S. B., O'Rourke, E. J., & Allison, A. C. (1977). Dengue viruses and mononuclear phagocytes. II. Identity of blood and tissue leukocytes supporting in vitro infection. J Exp Med, 146(1), 218-229
    Harris, J. (2011). Autophagy and cytokines. Cytokine, 56(2), 140-144
    Hathirat, P., Isarangkura, P., Srichaikul, T., Suvatte, V., & Mitrakul, C. (1993). Abnormal hemostasis in dengue hemorrhagic fever. Southeast Asian J Trop Med Public Health, 24 Suppl 1, 80-85
    He, C., & Klionsky, D. J. (2009). Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet, 43, 67-93
    Heaton, N. S., & Randall, G. (2011). Dengue virus and autophagy. Viruses, 3(8), 1332-1341
    Hilgard, P., & Stockert, R. (2000). Heparan sulfate proteoglycans initiate dengue virus infection of hepatocytes. Hepatology, 32(5), 1069-1077
    Hirase, T., Staddon, J. M., Saitou, M., Ando-Akatsuka, Y., Itoh, M., Furuse, M., . . . Rubin, L. L. (1997). Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci, 110 ( Pt 14), 1603-1613
    Ho, L. J., Wang, J. J., Shaio, M. F., Kao, C. L., Chang, D. M., Han, S. W., & Lai, J. H. (2001). Infection of human dendritic cells by dengue virus causes cell maturation and cytokine production. J Immunol, 166(3), 1499-1506
    Hori, H., & Lai, C. J. (1990). Cleavage of dengue virus NS1-NS2A requires an octapeptide sequence at the C terminus of NS1. J Virol, 64(9), 4573-4577
    Hou, X. Q., Gao, Y. W., Yang, S. T., Wang, C. Y., Ma, Z. Y., & Xia, X. Z. (2009). Role of macrophage migration inhibitory factor in influenza H5N1 virus pneumonia. Acta Virol, 53(4), 225-231
    Huang, J., Lam, G. Y., & Brumell, J. H. (2011). Autophagy signaling through reactive oxygen species. Antioxid Redox Signal, 14(11), 2215-2231
    Huang, K. J., Su, I. J., Theron, M., Wu, Y. C., Lai, S. K., Liu, C. C., & Lei, H. Y. (2005). An interferon-gamma-related cytokine storm in SARS patients. J Med Virol, 75(2), 185-194
    Huang, K. J., Yang, Y. C., Lin, Y. S., Huang, J. H., Liu, H. S., Yeh, T. M., . . . Lei, H. Y. (2006). The dual-specific binding of dengue virus and target cells for the antibody-dependent enhancement of dengue virus infection. J Immunol, 176(5), 2825-2832
    Huang, Y. H., Chang, B. I., Lei, H. Y., Liu, H. S., Liu, C. C., Wu, H. L., & Yeh, T. M. (1997). Antibodies against dengue virus E protein peptide bind to human plasminogen and inhibit plasmin activity. Clin Exp Immunol, 110(1), 35-40
    Huang, Y. H., Lei, H. Y., Liu, H. S., Lin, Y. S., Chen, S. H., Liu, C. C., & Yeh, T. M. (2003). Tissue plasminogen activator induced by dengue virus infection of human endothelial cells. J Med Virol, 70(4), 610-616
    Huang, Y. H., Lei, H. Y., Liu, H. S., Lin, Y. S., Liu, C. C., & Yeh, T. M. (2000). Dengue virus infects human endothelial cells and induces IL-6 and IL-8 production. Am J Trop Med Hyg, 63(1-2), 71-75
    Huang, Y. H., Liu, C. C., Wang, S. T., Lei, H. Y., Liu, H. L., Lin, Y. S., . . . Yeh, T. M. (2001). Activation of coagulation and fibrinolysis during dengue virus infection. J Med Virol, 63(3), 247-251
    Huber-Lang, M., Sarma, J. V., Zetoune, F. S., Rittirsch, D., Neff, T. A., McGuire, S. R., . . . Ward, P. A. (2006). Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med, 12(6), 682-687
    Huntington, J. A. (2005). Molecular recognition mechanisms of thrombin. J Thromb Haemost, 3(8), 1861-1872
    Huntington, J. A. (2012). Thrombin plasticity. Biochim Biophys Acta, 1824(1), 246-252
    Jiang, Z., Tang, X., Xiao, R., Jiang, L., & Chen, X. (2007). Dengue virus regulates the expression of hemostasis-related molecules in human vein endothelial cells. J Infect, 55(2), e23-28
    Kalayanarooj, S., Vaughn, D. W., Nimmannitya, S., Green, S., Suntayakorn, S., Kunentrasai, N., . . . Ennis, F. A. (1997). Early clinical and laboratory indicators of acute dengue illness. J Infect Dis, 176(21), 313-321
    Kayser, W., Meuller-Eckhardt, C., Budde, U., & Schmidt, R. E. (1981). Complement-fixing platelet autoantibodies in autoimmune thrombocytopenia. Am J Hematol, 11(2), 213-219
    Khakpoor, A., Panyasrivanit, M., Wikan, N., & Smith, D. R. (2009). A role for autophagolysosomes in dengue virus 3 production in HepG2 cells. J Gen Virol, 90(Pt 5), 1093-1103
    Khanna, M., Chaturvedi, U. C., Sharma, M. C., Pandey, V. C., & Mathur, A. (1990a). Increased capillary permeability mediated by a dengue virus-induced lymphokine. Immunology, 69(31), 449-453
    Khanna, M., Chaturvedi, U. C., Sharma, M. C., Pandey, V. C., & Mathur, A. (1990b). Increased capillary permeability mediated by a dengue virus-induced lymphokine. Immunology, 69(3), 449-453
    Kleemann, R., Hausser, A., Geiger, G., Mischke, R., Burger-Kentischer, A., Flieger, O., . . . Bernhagen, J. (2000). Intracellular action of the cytokine MIF to modulate AP-1 activity and the cell cycle through Jab1. Nature, 408(6809), 211-216
    Koraka, P., Benton, S., van Amerongen, G., Stittelaar, K. J., & Osterhaus, A. D. (2007). Characterization of humoral and cellular immune responses in cynomolgus macaques upon primary and subsequent heterologous infections with dengue viruses. Microbes Infect, 9(8), 940-946
    Kroschewski, H., Lim, S. P., Butcher, R. E., Yap, T. L., Lescar, J., Wright, P. J., . . . Davidson, A. D. (2008). Mutagenesis of the dengue virus type 2 NS5 methyltransferase domain. J Biol Chem, 283(28), 19410-19421
    Kuo, C. H., Tai, D. I., Chang-Chien, C. S., Lan, C. K., Chiou, S. S., & Liaw, Y. F. (1992). Liver biochemical tests and dengue fever. Am J Trop Med Hyg, 47(31), 265-270
    Lee, J., Giordano, S., & Zhang, J. (2012). Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J, 441(2), 523-540
    Lee, Y. R., Lei, H. Y., Liu, M. T., Wang, J. R., Chen, S. H., Jiang-Shieh, Y. F., . . . Liu, H. S. (2008). Autophagic machinery activated by dengue virus enhances virus replication. Virology, 374(2), 240-248
    Lee, Y. R., Liu, M. T., Lei, H. Y., Liu, C. C., Wu, J. M., Tung, Y. C., . . . Liu, H. S. (2006). MCP-1, a highly expressed chemokine in dengue haemorrhagic fever/dengue shock syndrome patients, may cause permeability change, possibly through reduced tight junctions of vascular endothelium cells. J Gen Virol, 87(Pt 12), 3623-3630
    Lee, Y. R., Su, C. Y., Chow, N. H., Lai, W. W., Lei, H. Y., Chang, C. L., . . . Liu, H. S. (2007). Dengue viruses can infect human primary lung epithelia as well as lung carcinoma cells, and can also induce the secretion of IL-6 and RANTES. Virus Res, 126(1-2), 216-225
    Leng, L., Metz, C. N., Fang, Y., Xu, J., Donnelly, S., Baugh, J., . . . Bucala, R. (2003). MIF signal transduction initiated by binding to CD74. J Exp Med, 197(11), 1467-1476
    Levine, B., & Deretic, V. (2007). Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol, 7(10), 767-777
    Lin, C. F., Chiu, S. C., Hsiao, Y. L., Wan, S. W., Lei, H. Y., Shiau, A. L., . . . Lin, Y. S. (2005). Expression of cytokine, chemokine, and adhesion molecules during endothelial cell activation induced by antibodies against dengue virus nonstructural protein 1. J Immunol, 174(1), 395-403
    Lin, C. F., Lei, H. Y., Liu, C. C., Liu, H. S., Yeh, T. M., Wang, S. T., . . . Lin, Y. S. (2001). Generation of IgM anti-platelet autoantibody in dengue patients. J Med Virol, 63(2), 143-149
    Lin, C. F., Lei, H. Y., Shiau, A. L., Liu, C. C., Liu, H. S., Yeh, T. M., . . . Lin, Y. S. (2003). Antibodies from dengue patient sera cross-react with endothelial cells and induce damage. J Med Virol, 69(1), 82-90
    Lin, C. F., Lei, H. Y., Shiau, A. L., Liu, H. S., Yeh, T. M., Chen, S. H., . . . Lin, Y. S. (2002). Endothelial cell apoptosis induced by antibodies against dengue virus nonstructural protein 1 via production of nitric oxide. J Immunol, 169(2), 657-664
    Lin, S. W., Chuang, Y. C., Lin, Y. S., Lei, H. Y., Liu, H. S., & Yeh, T. M. (2012). Dengue virus nonstructural protein NS1 binds to prothrombin/thrombin and inhibits prothrombin activation. J Infect, 64(3), 325-334
    Lin, Y. L., Liu, C. C., Lei, H. Y., Yeh, T. M., Lin, Y. S., Chen, R. M., & Liu, H. S. (2000). Infection of five human liver cell lines by dengue-2 virus. J Med Virol, 60(41), 425-431
    Lin, Y. S., Yeh, T. M., Lin, C. F., Wan, S. W., Chuang, Y. C., Hsu, T. K., . . . Lei, H. Y. (2011a). Molecular mimicry between virus and host and its implications for dengue disease pathogenesis. Exp Biol Med (Maywood), 236(5), 515-523
    Lin, Y. S., Yeh, T. M., Lin, C. F., Wan, S. W., Chuang, Y. C., Hsu, T. K., . . . Lei, H. Y. (2011b). Molecular mimicry between virus and host and its implications for dengue disease pathogenesis. Exp Biol Med (Maywood)
    Liu, I. J., Chiu, C. Y., Chen, Y. C., & Wu, H. C. (2011). Molecular mimicry of human endothelial cell antigen by autoantibodies to nonstructural protein 1 of dengue virus. J Biol Chem, 286(11), 9726-9736
    Lozach, P. Y., Burleigh, L., Staropoli, I., Navarro-Sanchez, E., Harriague, J., Virelizier, J. L., . . . Amara, A. (2005). Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN)-mediated enhancement of dengue virus infection is independent of DC-SIGN internalization signals. J Biol Chem, 280(25), 23698-23708
    Lue, H., Dewor, M., Leng, L., Bucala, R., & Bernhagen, J. (2011). Activation of the JNK signalling pathway by macrophage migration inhibitory factor (MIF) and dependence on CXCR4 and CD74. Cell Signal, 23(1), 135-144
    Luplertlop, N., Misse, D., Bray, D., Deleuze, V., Gonzalez, J. P., Leardkamolkarn, V., . . . Veas, F. (2006). Dengue-virus-infected dendritic cells trigger vascular leakage through metalloproteinase overproduction. EMBO Rep, 7(11), 1176-1181
    Makita, H., Nishimura, M., Miyamoto, K., Nakano, T., Tanino, Y., Hirokawa, J., . . . Kawakami, Y. (1998). Effect of anti-macrophage migration inhibitory factor antibody on lipopolysaccharide-induced pulmonary neutrophil accumulation. Am J Respir Crit Care Med, 158(2), 573-579
    Manzano, M., Reichert, E. D., Polo, S., Falgout, B., Kasprzak, W., Shapiro, B. A., & Padmanabhan, R. (2011). Identification of cis-acting elements in the 3'-untranslated region of the dengue virus type 2 RNA that modulate translation and replication. J Biol Chem, 286(25), 22521-22534
    Marchi, R., Nagaswami, C., & Weisel, J. W. (2009). Fibrin formation and lysis studies in dengue virus infection. Blood Coagul Fibrinolysis, 20(7), 575-582
    Markoff, L. J., Innis, B. L., Houghten, R., & Henchal, L. S. (1991a). Development of cross-reactive antibodies to plasminogen during the immune response to dengue virus infection. J Infect Dis, 164(2), 294-301
    Markoff, L. J., Innis, B. L., Houghten, R., & Henchal, L. S. (1991b). Development of cross-reactive antibodies to plasminogen during the immune response to dengue virus infection. J Infect Dis, 164(21), 294-301
    Martin, T. R. (2000). MIF mediation of sepsis. Nat Med, 6(2), 140-141
    Martina, B. E., Koraka, P., & Osterhaus, A. D. (2009). Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev, 22(4), 564-581
    Miller, F. J., Jr., Chu, X., Stanic, B., Tian, X., Sharma, R. V., Davisson, R. L., & Lamb, F. S. (2010). A differential role for endocytosis in receptor-mediated activation of Nox1. Antioxid Redox Signal, 12(5), 583-593
    Modis, Y., Ogata, S., Clements, D., & Harrison, S. C. (2003). A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A, 100(12), 6986-6991
    Mukhopadhyay, S., Kuhn, R. J., & Rossmann, M. G. (2005). A structural perspective of the flavivirus life cycle. Nat Rev Microbiol, 3(1), 13-22
    Murphy, S. L., Li, H., Mingozzi, F., Sabatino, D. E., Hui, D. J., Edmonson, S. A., & High, K. A. (2009). Diverse IgG subclass responses to adeno-associated virus infection and vector administration. J Med Virol, 81(1), 65-74
    Narvaez, F., Gutierrez, G., Perez, M. A., Elizondo, D., Nunez, A., Balmaseda, A., & Harris, E. (2011). Evaluation of the traditional and revised WHO classifications of Dengue disease severity. PLoS Negl Trop Dis, 5(11), e1397
    Nguyen, T. H., Lei, H. Y., Nguyen, T. L., Lin, Y. S., Huang, K. J., Le, B. L., . . . Halstead, S. B. (2004). Dengue hemorrhagic fever in infants: a study of clinical and cytokine profiles. J Infect Dis, 189(2), 221-232
    Nguyen, T. H., Nguyen, T. L., Lei, H. Y., Lin, Y. S., Le, B. L., Huang, K. J., . . . Halstead, S. B. (2005). Association between sex, nutritional status, severity of dengue hemorrhagic fever, and immune status in infants with dengue hemorrhagic fever. Am J Trop Med Hyg, 72(4), 370-374
    Nishioka, K. (1974). Serum complement level in dengue hemorrhagic fever. Allerg Immunol (Leipz), 20-21(4), 385-392
    Ong, C. C., Lam, S. K., & AbuBakar, S. (1998). Cellular proteins bind to the 3' and 5' untranslated regions of dengue 2 virus genome. Malays J Pathol, 20(1), 11-17
    Onlamoon, N., Noisakran, S., Hsiao, H. M., Duncan, A., Villinger, F., Ansari, A. A., & Perng, G. C. (2010). Dengue virus-induced hemorrhage in a nonhuman primate model. Blood, 115(9), 1823-1834
    Paiva, C. N., Arras, R. H., Magalhaes, E. S., Alves, L. S., Lessa, L. P., Silva, M. H., . . . Bozza, M. T. (2009). Migration inhibitory factor (MIF) released by macrophages upon recognition of immune complexes is critical to inflammation in Arthus reaction. J Leukoc Biol, 85(5), 855-861
    Park, H. J., Lee, S. J., Kim, S. H., Han, J., Bae, J., Kim, S. J., . . . Chun, T. (2011). IL-10 inhibits the starvation induced autophagy in macrophages via class I phosphatidylinositol 3-kinase (PI3K) pathway. Mol Immunol, 48(4), 720-727
    Pattnaik, P., Babu, J. P., Verma, S. K., Tak, V., & Rao, P. V. (2007). Bacterially expressed and refolded envelope protein (domain III) of dengue virus type-4 binds heparan sulfate. J Chromatogr B Analyt Technol Biomed Life Sci, 846(1-2), 184-194
    Pijlman, G. P., Funk, A., Kondratieva, N., Leung, J., Torres, S., van der Aa, L., . . . Khromykh, A. A. (2008). A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity. Cell Host Microbe, 4(6), 579-591
    Preugschat, F., Yao, C. W., & Strauss, J. H. (1990). In vitro processing of dengue virus type 2 nonstructural proteins NS2A, NS2B, and NS3. J Virol, 64(9), 4364-4374
    Rai, C. I., H.Y. Lei, Y.S. Lin, H.S. Liu, S.H. Chen, L.C. Chen, T.M. Yeh. (2008). Epitope mapping of dengue-virus-enhancing monoclonal-antibody using phage display peptide library. Am. J. Infect. Dis. , 4, 75-84
    Rau, J. C., Beaulieu, L. M., Huntington, J. A., & Church, F. C. (2007). Serpins in thrombosis, hemostasis and fibrinolysis. J Thromb Haemost, 5 Suppl 1, 102-115
    Ravikumar, B., Sarkar, S., Davies, J. E., Futter, M., Garcia-Arencibia, M., Green-Thompson, Z. W., . . . Rubinsztein, D. C. (2010). Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev, 90(4), 1383-1435
    Rodenhuis-Zybert, I. A., van der Schaar, H. M., da Silva Voorham, J. M., van der Ende-Metselaar, H., Lei, H. Y., Wilschut, J., & Smit, J. M. (2010). Immature dengue virus: a veiled pathogen? PLoS Pathog, 6(1), e1000718
    Ruangjirachuporn, W., Boonpucknavig, S., & Nimmanitya, S. (1979). Circulating immune complexes in serum from patients with dengue haemorrhagic fever. Clin Exp Immunol, 36(1), 46-53
    Scherz-Shouval, R., & Elazar, Z. (2011). Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci, 36(1), 30-38
    Shi, X., Leng, L., Wang, T., Wang, W., Du, X., Li, J., . . . Bucala, R. (2006). CD44 is the signaling component of the macrophage migration inhibitory factor-CD74 receptor complex. Immunity, 25(4), 595-606
    Sivaprasad, U., & Basu, A. (2008). Inhibition of ERK attenuates autophagy and potentiates tumour necrosis factor-alpha-induced cell death in MCF-7 cells. J Cell Mol Med, 12(4), 1265-1271
    Sosothikul, D., Seksarn, P., Pongsewalak, S., Thisyakorn, U., & Lusher, J. (2007). Activation of endothelial cells, coagulation and fibrinolysis in children with Dengue virus infection. Thromb Haemost, 97(4), 627-634
    Stein, D. A., Perry, S. T., Buck, M. D., Oehmen, C. S., Fischer, M. A., Poore, E., . . . Fruh, K. (2011). Inhibition of dengue virus infections in cell cultures and in AG129 mice by a small interfering RNA targeting a highly conserved sequence. J Virol, 85(19), 10154-10166
    Suharti, C., van Gorp, E. C., Setiati, T. E., Dolmans, W. M., Djokomoeljanto, R. J., Hack, C. E., . . . van der Meer, J. W. (2002). The role of cytokines in activation of coagulation and fibrinolysis in dengue shock syndrome. Thromb Haemost, 87(1), 42-46
    Sukupolvi-Petty, S., Austin, S. K., Purtha, W. E., Oliphant, T., Nybakken, G. E., Schlesinger, J. J., . . . Diamond, M. S. (2007). Type- and subcomplex-specific neutralizing antibodies against domain III of dengue virus type 2 envelope protein recognize adjacent epitopes. J Virol, 81(23), 12816-12826
    Sun, H., Ringdahl, U., Homeister, J. W., Fay, W. P., Engleberg, N. C., Yang, A. Y., . . . Ginsburg, D. (2004). Plasminogen is a critical host pathogenicity factor for group A streptococcal infection. Science, 305(5688), 1283-1286
    Talavera, D., Castillo, A. M., Dominguez, M. C., Gutierrez, A. E., & Meza, I. (2004). IL8 release, tight junction and cytoskeleton dynamic reorganization conducive to permeability increase are induced by dengue virus infection of microvascular endothelial monolayers. J Gen Virol, 85(Pt 7), 1801-1813
    Tassaneetrithep, B., Burgess, T. H., Granelli-Piperno, A., Trumpfheller, C., Finke, J., Sun, W., . . . Marovich, M. A. (2003). DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med, 197(7), 823-829
    Thein, S., Aaskov, J., Myint, T. T., Shwe, T. N., Saw, T. T., & Zaw, A. (1993). Changes in levels of anti-dengue virus IgG subclasses in patients with disease of varying severity. J Med Virol, 40(2), 102-106
    Thomas, H. I., & Morgan-Capner, P. (1988). Specific IgG subclass antibody in rubella virus infections. Epidemiol Infect, 100(3), 443-454
    van der Schaar, H. M., Rust, M. J., Waarts, B. L., van der Ende-Metselaar, H., Kuhn, R. J., Wilschut, J., . . . Smit, J. M. (2007). Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking. J Virol, 81(21), 12019-12028
    Virgin, H. W., & Levine, B. (2009). Autophagy genes in immunity. Nat Immunol, 10(5), 461-470
    Wang, L. Y., Chang, W. Y., Lu, S. N., & Chen, T. P. (1990). Sequential changes of serum transaminase and abdominal sonography in patients with suspected dengue fever. Gaoxiong Yi Xue Ke Xue Za Zhi, 6(91), 483-489
    Wati, S., Soo, M. L., Zilm, P., Li, P., Paton, A. W., Burrell, C. J., . . . Carr, J. M. (2009). Dengue virus infection induces upregulation of GRP78, which acts to chaperone viral antigen production. J Virol, 83(24), 12871-12880
    Watt, P. J., Zardis, M., & Lambden, P. R. (1986). Age related IgG subclass response to respiratory syncytial virus fusion protein in infected infants. Clin Exp Immunol, 64(3), 503-509
    Wootla, B., Lacroix-Desmazes, S., Warrington, A. E., Bieber, A. J., Kaveri, S. V., & Rodriguez, M. (2011). Autoantibodies with enzymatic properties in human autoimmune diseases. J Autoimmun
    Xie, L., Qiao, X., Wu, Y., & Tang, J. (2011). beta-Arrestin1 mediates the endocytosis and functions of macrophage migration inhibitory factor. PLoS One, 6(1), e16428
    Xie, X., Wang, Q. Y., Xu, H. Y., Qing, M., Kramer, L., Yuan, Z., & Shi, P. Y. (2011). Inhibition of dengue virus by targeting viral NS4B protein. J Virol, 85(21), 11183-11195
    Xu, H., Di, B., Pan, Y. X., Qiu, L. W., Wang, Y. D., Hao, W., . . . Che, X. Y. (2006). Serotype 1-specific monoclonal antibody-based antigen capture immunoassay for detection of circulating nonstructural protein NS1: Implications for early diagnosis and serotyping of dengue virus infections. J Clin Microbiol, 44(8), 2872-2878
    Yang, Y. H., Chang, C. J., Chuang, Y. H., Hsu, H. Y., Chen, P. P., & Chiang, B. L. (2010). Identification of anti-prothrombin antibodies in the anti-phospholipid syndrome that display the prothrombinase activity. Rheumatology (Oxford), 49(1), 34-42
    Yusof, R., Clum, S., Wetzel, M., Murthy, H. M., & Padmanabhan, R. (2000). Purified NS2B/NS3 serine protease of dengue virus type 2 exhibits cofactor NS2B dependence for cleavage of substrates with dibasic amino acids in vitro. J Biol Chem, 275(14), 9963-9969
    Zhang, L., Mohan, P. M., & Padmanabhan, R. (1992). Processing and localization of Dengue virus type 2 polyprotein precursor NS3-NS4A-NS4B-NS5. J Virol, 66(12), 7549-7554
    Zhang, W., Yue, B., Wang, G. Q., & Lu, S. L. (2002). Serum and ascites levels of macrophage migration inhibitory factor, TNF-alpha and IL-6 in patients with chronic virus hepatitis B and hepatitis cirrhosis. Hepatobiliary Pancreat Dis Int, 1(4), 577-580
    Zybert, I. A., van der Ende-Metselaar, H., Wilschut, J., & Smit, J. M. (2008). Functional importance of dengue virus maturation: infectious properties of immature virions. J Gen Virol, 89(Pt 12), 3047-3051

    無法下載圖示 校內:2020-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE