簡易檢索 / 詳目顯示

研究生: 陳信安
Chen, Shin-An
論文名稱: 利用二氧化碳及甲烷的獨立式熱電共生系統之設計與控制
Design and Control of Stand-alone Combined Heat and Power Systems Using CO2/CH4
指導教授: 吳煒
Wu, Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 83
中文關鍵詞: 溫室氣體燃料電池熱電共生
外文關鍵詞: greenhouse gases, fuel cell, CHP
相關次數: 點閱:88下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來各發電廠因應二氧化碳造成溫室效應的議題,開始使用較潔淨的甲烷原料取代以往的煤炭原料,但是卻衍生出煙道氣的二氧化碳濃度過低,增加後續進行碳補捉所需的耗能以及增加二氧化碳封存的困難。為了有效提升二氧化碳的濃度過低且生產較潔淨的電力,本研究設計以煙道氣中的二氧化碳作為主要原料,並結合固態氧化物燃料電池、汽渦輪兩種發電系統的獨立熱電共生發電系統。
    藉由Aspen Custom Modeler(ACM)建立的固態氧化燃料電池模型以及Aspen Plus的內建模型,成功模擬出不需外界熱源的獨立熱電共生發電系統,並使用靈敏度分析實現燃料處理程序(Fuel processor)、固態氧化燃料電池(SOFC)以及汽渦輪系統(GT)等主要架構的操作條件分析,並進行發電效率的優化,最高發電效率可達52.51%,且大幅提升排出二氧化碳的濃度,為一般以甲烷原料進行發電的煙道氣濃度再增加4.7倍,有效解決煙道氣二氧化碳排放濃度過低所造成後續碳捕捉耗能的問題。
    此外,透過動態模擬來進一步貼近實務的情況,基於庫存控制維持系統平衡,考慮後燃器燃燒的安全考量設置交叉限制燃燒控制,來作為後續品質控制設計的基礎,提出實現總發電量的彈性控制,並且再修改現有控制架構,進一步藉由多變數單迴路控制的配對分析,設計具碳排放限制的總發電量彈性控制,在適當操作過程碳排放可以在400 gCO2/kWh以下,得到良好的控制效果。

    Recently, the power plants start to use methane instead of coal to deal with the issue of global warming, but it will produce some problem about the concentration of carbon dioxide in flue gas that is too low to capture. Finally, Increasing the difficulty of Carbon Capture and Storage (CCS) is to need to supply more heat duty. In order to increase the concentration of carbon dioxide and provide more clean power from methane, this research built a stand-alone combine head and power (CHP) system which combines SOFC/GT using carbon dioxide from flue gas. Based on Aspen Custom Modeler® and Aspen Plus® model, we successfully design a stand-alone combined and power system which performs a high efficiency. By using optimization, the electric efficiency can be up to 52.51% and the concentration of carbon dioxide of this system is 4.7 times higher than ordinary power plant with methane. Also, this research discuss dynamic simulation including setpoint tracking control to meet the practical demand.

    摘要 I Abstract II 誌謝 XI 目錄 XII 表目錄 XV 圖目錄 XVII 第一章緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與目的 3 第二章理論與模型建立 5 2.1 燃料處理程序 5 2.1.1 熱力學模型 6 2.1.2物理性質 6 2.1.3 乾式重組反應動力學及反應器 7 2.2固態氧化物燃料電池(SOFC)模組 9 2.2.1 燃料電池數學模式之假設 10 2.2.2 固態氧化物燃料電池系統模擬 11 2.2.3 燃料電池電化學模型 11 2.2.3.1 活化過電位 13 2.2.3.2 歐姆過電位 14 2.2.3.3 濃度過電位 15 2.2.4 燃料電池之動態質量守恆 15 2.2.5 燃料電池之能量守恆 18 2.2.6 燃料電池尾氣結合汽渦輪機發電程序 21 第三章 獨立熱電共生發電系統之穩態模擬分析 22 3.1燃料處理程序穩態模擬分析 23 3.2固態氧化燃料電池穩態模擬分析 27 3.3獨立熱電共生系統 32 3.3.1獨立式熱電共生系統的設計架構 33 3.3.2汽渦輪發電系統穩態模擬分析 36 3.3.3發電系統的初步穩態結果 39 3.3.4發電系統的優化設計 42 第四章 獨立熱電共生發電系統之動態模擬分析 48 4.1系統之自由度分析 48 4.2系統之基礎控制環路設計 53 4.2.1系統之庫存控制迴路建立 53 4.2.2系統之交叉限制燃燒控制設計 54 4.3系統之品質控制策略設計 59 4.3.1總發電量之彈性操作控制 (CS1) 59 4.3.2具碳排限制之總發電量彈性操作控制 (CS2) 71 第五章結論 80 參考文獻 81

    [1] J. Xu, and G.F. Froment, Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics, AIChE Journal, 35, 88 (1989).
    [2] J.T. Richardson, S.A. Paripatyadar , Carbon dioxide reforming of methane with supported rhodium. Applied Catalysis, 61, 293 (1990).
    [3] Singhal, S.C. and K. Kendall, High temperature solid oxide fuel cells: fundamentals, design and applications, Elsevier Advamced Technology, (2003).
    [4] E.A. Liese, and R.S. Gemmen, Performance Comparison of Internal Reforming Against External Reforming in a Solid Oxide Fuel Cell, Gas Turbine Hybrid System, Journal of Engineering for Gas Turbines and Power, 127, 86 (2005).
    [5] W. Zhang, E. Croiset, P.L. Douglas, M.W. Fowler, and E. Entchev, Simulation of a tubular solid oxide fuel cell stack using Aspen Plus unit operation models. Energy Conversion and Management, 46, 181 (2004).
    [6] P. Kuchonthara, S. Bhattachary, and A. Tsutsumi, Energy recuperation in solid oxide fuel cell (SOFC) and gas turbine (GT) combined system. Journal of Power Sources, 117, 7 (2003).
    [7] P. Kuchonthara, S. Bhattacharyab, and A. Tsutsumi, Combinations of solid oxide fuel cell and several enhanced gas turbine cycles. Journal of Power Sources, 124, 65 (2003).
    [8] F. Leuchta, W.G. Bessler, J. Kallo, K.A. Friedrich, and H. M.-S., Fuel cell system modeling for solid oxide fuel cell/gas turbine hybrid power plants, Part I: Modeling and simulation framework. Journal of Power Sources, 196, 1205 (2011).
    [9] R. Kandepu, L. Imsland, B.A. Foss, C. Stiller, B. Thorud, and O. Bolland, Modeling and control of a SOFC-GT-based autonomous power system, Energy, 32, 406 (2007).
    [10] C. Alie, L. Backham, E. Croiset, P.L. Douglas, Simulation of CO2 capture using MEA scrubbing : a flowsheet decompostion method, Energy Conversion and Management, 46, 475 (2005).
    [11] S. Kumar, M. Agrawal, S. Kumar, and S. Jilani, The production of syngas by dry reforming in membrane reactor using alumina-supported Rh catalyst: A simulation study, International Journal of Chemical Reactor Engineering, 6, 109 (2008).
    [12] B.Thorud, Dynamic modelling and characterisation of a solid oxide fuel cell integrated in a gas turbine cycle, in Department of Energy and Process Engineering. (2005) Norwegian University of Science and Technology Faculty of Engineering Science and Technology.
    [13] F. Calise, A. Palombo, and L.Vanoli, Design and partial load exergy analysis of hybrid SOFC-GT power plant, Journal of Power Sources, 158, 225 (2006).
    [14] S. Campanari, and P. Iora, Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry, Journal of Power Sources, 132, 113 (2004).
    [15] F. Jurado, Predictive control of solid oxide fuel cells using fuzzy Hammerstein models, Journal of Power Sources, 158, 245 (2006).
    [16] X. Zhang, J. Li, and G. Li, Numerical study on the thermal characteristics in a tubular solid oxide fuel cell with indirect internal reformer, International Journal of Thermal Sciences, 48, 805 (2009).
    [17] B.A. Haberman, and J.B. Young, Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell, Internaltional Journal of Heat and Mass Transfer, 47, 3617 (2004).
    [18] N. Chatrattanawet, S. Skogestad, A. Arpornwichanop, Control structure design and dynamic modeling for a solid oxide fuel cell with direct internal reforming of methane, Chemical Engineering Research and Design, 98, 202 (2015).
    [19] J.M. Smith, H.V. Ness, and M. Abbott, Introduction to chemical engineering thermodynamics, McGraw-Hill, New York (2005).
    [20] W.L. Luyben, Chemical reactor design and control, John Wiley & Sons, Inc., New York (2006).
    [21] M.C. Lee et al., Gas turbine combustion performance test of hydrogen and carbon monoxide synthetic gas, 89, 1485 (2010).
    [22] M. Granovskii, I. Dincer, and M. A. Rosen, Performance comparison of two combined SOFC-gas turbine systems, Journal of Power Sources, 165, 307 (2007).
    [23] S.H. Chan, H.K. Ho, and Y. Tian, Modeling of simple hybrid solid oxide fuel cell and gas turbine power plant, Journal of Power Sources, 109, 111 (2002).
    [24] W.L. Luyben, B.D. Tyreus, and M.L. Luyben, Plantwide process control, McGraw-Hill, New York (1998).
    [25] M.V.S.N. Murthy Knoda, G.P. Rangaiah, P.R. Krishnaswamy, A simple and effective procedure for control degrees of freedom, Chemical Enginerring Science, 61, 1184 (2006).
    [26] W.L. Luyben, Distillation design and control using aspen simulation, John Wiley & Sons, Inc., New York (2013).
    [27] W.L. Luyben, Process modeling, simulation, and control for chemical engineers, McGraw-Hill, New York (1989).
    [28] 王一虹,程序控制,揚智文化,1999。
    [29] IEA. (2015) "CO2 emissions from fuel combustion : highlights"

    下載圖示 校內:2021-07-13公開
    校外:2021-07-13公開
    QR CODE