簡易檢索 / 詳目顯示

研究生: 席妮瑪
Ni'mah, Hikmatun
論文名稱: 不定型高分子或離子液體誘導之生物可分解高分子新穎結晶形貌與晶板組裝
Novel Crystalline Morphology and Lamellar Assembly of Biodegradable Polymers Induced by Strongly Interacting Amorphous Polymers or Ionic Liquids
指導教授: 吳逸謨
Woo, Eamor M.
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 171
中文關鍵詞: 聚羥基丁酸酯聚丁二酸二乙酯左式聚乳酸聚甲基丙烯酸甲酯聚對位乙烯基酚離子液體結晶形貌
外文關鍵詞: PHB, PESu, PLLA, PMMA, PVPh, IL, crystalline morphology
相關次數: 點閱:109下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主旨是將生物可分解性高分子與不定型高分子或離子液體進行混摻,並觀察其結晶形貌與晶板排列。以聚羥基丁酸酯 [poly(hydroxybutyrate),PHB]/對排聚甲基丙烯酸甲酯 [syndiotactic poly(methyl methacrylate),sPMMA]與PHB/同排聚甲基丙烯酸甲酯 [isotactic poly(methyl methacrylate),iPMMA]等混摻系統進行熱分析與相行為分析,發現兩個混摻系統存在相似的相行為,其上臨界溶液溫度(upper-critical-solution-temperature,UCST)分別約為225 oC以及240 oC。而在形貌觀察部分,sPMMA的對排性對球晶形貌的改變有著顯著的影響,相反地,iPMMA的同排性卻是幾乎沒有影響。在高含量sPMMA (如: 30 wt%)的PHB/sPMMA混摻系統中,在結晶溫度介於50-90 oC時,球晶均為負型(negative-birefringence)且無環帶狀(ringless)的球晶形貌。意味著本來neat PHB的環帶狀球晶受到干擾而完全消失,且PHB球晶的的光學特性也從本來的正型轉變成了負型球晶。但此現象並未發生在PHB/iPMMA混摻系統中。
    在另外一個混摻系統聚丁二酸二乙酯[poly(ethylene succinate),PESu]/聚對位乙烯基酚[poly(p-vinyl phenol),PVPh]中,在不定型高分子含量為10-35 wt%、Tc = 40-70 oC且為超薄膜膜厚的條件下,可觀察到九種不同的結晶形貌。在單一的結晶溫度下,neat PESu從未被發現同時具有多樣的結晶形貌,但此狀況發生在PVPh含量大於20 wt%的PESu/PVPh混摻系統中。結晶溫度、膜厚/空間限制以及互有作用力存在的不定型PVPh的加入都是造成多樣球晶形貌的重要因素,部分原因來自PESu和PVPh間有很強的氫鍵作用力以及在擴散介面上有更好的成核能力。而在PESu/PVPh混摻體中,於膜厚約500 nm及熔融結晶溫度大於70 oC時所形成的PESu單晶形貌,利用AFM進行揭露。而TEM的電子繞射圖譜更進一步的證實PESu單晶的生成。薄的膜厚、較高的結晶溫度以及兩高分子間強作用力的存在,被認為是熔融結晶下形成PESu單晶的主要因素。
    左式聚乳酸[poly(L-lactic),PLLA]在特定的條件下可以發現到新穎的結晶形貌。低分子量的PLLA(LMw-PLLA)在熔融結晶溫度Tc = 110 oC時以及薄膜狀態下可觀察到六邊形的晶核,並從而發展出六邊形的環帶及出現在六個角的纖維稈狀結晶,球晶的最外圍則似有六片花瓣狀的球晶形貌。在環帶狀的形貌部分,可發現有序的寬和小的flat-on晶板,分離的排列形成具週期性高度變化的形貌,然而在纖維狀區域則發現晶板以連續的flat-on,微傾及edge-on方式進行排列。初始的幾何形狀被認為是影響最終球晶形貌的重要因素。
    在左式聚乳酸[poly(L-lactic),PLLA]混摻離子液體[ionic liquid,IL]系統中, LMw-PLLA因IL的添加而出現多樣的球晶形貌,且並未在neat PLLA中被觀察到。在具甘氨酸酯基的離子液體摻合下,首次發現具有星形晶核的PLLA新型六角形結晶形貌。離子液體的塑化效果導致球晶成長初期具有較快的成核和生長速率。而在球晶成長的後期,離子液體的含量提高讓高分子鏈的流動性更為增加,使得結晶形貌從六邊形轉變為星形的球晶形貌。另外在PLLA/IL的混摻系統中,當離子液體的含量較高時也可以觀察到特殊的枝狀結晶形貌。隨著離子液體的含量增加,PLLA球晶成長速率變慢且PLLA的玻璃轉換溫度(Tg)下降,這都說明了離子液體PLLA所造成的塑化作用以及兩者間存在的作用力阻礙了PLLA的熔融結晶。PLLA在結晶後的冷卻過程中,常展現材料脆性且有大規模的裂縫生成,然而在加入離子液體後,會使裂縫的形成減少甚至消失。

    This study has been focused on the crystalline morphology and lamellar arrangement of biodegradable polymers blended with amorphous polymers or ionic liquid. Blends of poly(hydroxybutyrate)/syndiotactic poly(methyl methacrylate) (PHB/sPMMA) and poly(hydroxybutyrate)/isotactic poly(methyl methacrylate) (PHB/iPMMA) exhibited similar phase behavior which is upper-critical-solution-temperature (UCST) at ~225 oC and ~240 oC respectively, based on the results of thermal analysis and phase morphology. However, syndiotacticity in PMMA exerts a prominent effect on altering the PHB spherulites morphology while, by contrast, isotacticity in PMMA has most no effect at all. At high sPMMA contents (e.g., 30 wt%) in the PHB/sPMMA blend, the spherulites are all negative-birefringence and ring-less when crystallized at any crystallization temperature (Tc) between 50-90 oC. That is, not only the original ring-banded pattern in neat PHB spherulites is completely disrupted, but the optical sign is reverted completely from positive- to negative-birefringence in sPMMA/PHB blend, but not seen in isotactic PMMA/PHB one.
    A total of nine different types of crystalline morphology were identified in the poly(ethylene succinate)/poly(p-vinyl phenol) (PESu/PVPh) blend with amorphous contents from 10 to 35 wt% and Tc = 40-70 oC in ultra-thin film thickness. Multiple types of PESu crystalline morphology at the same Tc are never seen in neat PESu, but occur in PESu/PVPh blend with amorphous PVPh higher than 20 wt%. Crystallization temperature, thickness/space confinement, and presence of interacting amorphous PVPh are the main factors for multiple types of spherulites in the blends, partly due to strong interactions via hydrogen bonding between PESu and PVPh and likely extra nucleation capacity from the diffusion interfaces. Single crystals of PESu were proven by AFM in the PESu/PVPh blend especially when confined in films of around 500 nm, melt-crystallized at Tc =70 oC or above. The electron diffraction pattern of TEM result further confirmed the formation of PESu single crystals. The combination of thin film thickness, high crystallization temperature, and strong interaction between two polymers were believed as the main factors for melt-crystallized PESu single crystals.
    Novel morphology is found in neat PLLA at specific condition. The six-petal spherulite morphology composed of a combination of a central hexagon core, hexagon-shape ring bands and fibrous six stalks was discovered in a low molecular weight PLLA (LMw-PLLA) melt-crystallized at a specific Tc =110oC and confined in thin films. Discrete lamellae, consisting of sequenced wide and small lamellae, all in flat-on orientation with periodically up-and-down topology, were packed in ring-banded alignment, while continuous lamellae in flat-on, tilted, or edge-on orientation were arranged in fibrous region. The geometry of the initial crystal was believed to be the influencing factors in final spherulite patterns. Crystalline morphology of poly(L-lactide) (PLLA) is significantly changed by the addition of ionic liquid (IL) to display a diversification of spherulites morphology which never been seen before in neat PLLA. A hexagonal crystal with star-shaped core, a novel crystal morphology never seen before, in LMw-PLLA modified by glycine ester based ionic liquid. The plasticizing effect of the ionic liquid leads to faster nucleation and growth rate in the early stage of crystallization. In the latter stage of crystal growth, the increase in polymer chain mobility, enhanced by the ionic liquid addition, leads to a morphology transformation from hexagon-shape to star-shape morphology. Special dendritic morphology is also observed in PLLA/IL blend with higher IL content. The existence of the IL-PLLA interaction impedes the melt crystallization of PLLA, indicated by the decrease in spherulitic growth rate with increasing IL content, and the glass transition (Tg) of PLLA decreases with the increase in IL content, showing the plasticizing effect to PLLA. Neat PLLA shows brittleness with extensive crack formation during post-crystallization cooling process; however, after the addition of IL, the crack formation is reduced or even diminished.

    Abstract (in Chinese) i Abstract iii Acknowledgement v Contents vii List of Tables ix List of Figures x Chapter 1 Introduction 1 1.1 Biodegradable Polymers 1 1.2 Crystalline/Amorphous Polymer Blend Systems 2 1.2.1 Miscibilty of polymer blends 2 1.2.2 Crystalline morphology of polymer blends 5 1.3 Multiple Spherulites Types Formation 7 1.4 Single Crystal and Dendritic Morphology in Thin Films 9 1.5 Formation of Ring-banded Morphology 13 1.6 Room Temperature Ionic Liquids (RTILs) 18 1.6.1 Amino acid ionic liquids 18 1.6.2 Polymer/ionic liquid blend systems 19 1.7 Research Objectives 20 Chapter 2 Theoretical Background 22 2.1 Phase Behavior of Polymer Blend Systems 22 2.1.1 Thermodynamics for miscibility in polymer mixture 22 2.1.2 Polymer-polymer phase separation 24 2.1.3 Determination of equilibrium melting temperature 28 2.2 Crystallization from the Melt 29 2.2.1 Spherulitic morphology 29 2.2.2 Mechanism of spherulite formation 31 2.2.3 Spherulite in polymer blends 32 2.3 Polymer Single Crystals 34 2.3.1 The Folded-Chain model 34 .3.2 The Switchboard model 35 2.3.3 Electron diffraction of single crystals 36 Chapter 3 Experimental Section 37 3.1 Materials 37 3.2 Sample Preparation 39 3.2.1 Preparation of Poly(3-hydroxy butyrate) (PHB)/tactic poly(methyl methacrylate) (PMMA) blend samples 39 3.2.2 Preparation of Poly(ethylene succinate) (PESu)/Poly(p-vinyl phenol) (PVPh) blend samples 40 3.2.3 Preparation of Poly(L-lactide) (PLLA)/Ionic liquid (IL) blend samples 40 3.3 Apparatus 41 3.3.1 Polarized Optical Microscopy (POM) 41 3.3.2 Differential Scanning Calorimetry (DSC) 41 3.3.3 Atomic Force microscopy (AFM) 42 3.3.4 Transmission electron microscope (TEM) 42 3.3.5 Fourier-transform infrared spectroscopy (FT-IR) 42 Chapter 4 Results and Discussion 44 4.1 Configurational Effects on Crystalline Morphology and Amorphous Phase Behavior in Poly(3-hydroxy butyrate) Blends with Tactic Poly(methyl methacrylate) 44 4.2 Diversification of Spherulites Pattern and Single Crystal Morphology in PESu/PVPh Blends 65 4.2.1 Diversification of Spherulite Patterns in Poly(ethylene succinate) Crystallized with Strongly Interacting Poly(4-vinyl phenol) 65 4.2.2 Dendritic Morphology Composed of Stacked Single Crystals in Poly(ethylene succinate) Melt-Crystallized with Poly(p-vinyl phenol) 91 4.3 Effects of Glycine-Based Ionic Liquid on the Spherulite Morphology of Biodegradable Poly(L-Lactide) 111 Chapter 5 Conclusions 145 References 150 Appendix A (Supporting Information) 166

    [1] N. Grassie, E. J. Murray, and P. A. Holmes, "The Thermal Degradation of Poly(-(D)-β-hydroxybutyric acid): Part 2—Changes in Molecular Weight." Polymer Degradation & Stability, vol. 6, pp. 95-103, 1984.
    [2] P. J. Barham and A. Keller, "The Relationship Between Microstructure and Mode of Fracture in Polyhydroxybutyrate," Journal of Polymer Science, Polymer Physics Edition, vol. 24, pp. 69-77, 1986.
    [3] P. J. Barham, A. Keller, E. L. Otum, and P. A. Holmes, "Crystallization and Morphology of a Bacterial Thermoplastic: Poly-3-hydroxybutyrate." Journal of Materials Science, vol. 19, pp. 2781-2794, 1984.
    [4] M. Gazzano, M. L. Focarete, C. Reikel, A. Ripamonti, and M. Scandola, "Structural Investigation of Poly(3-hydroxybutyrate) Spherulites by Microfocus X-Ray Diffraction." Macromolecular Chemistry and Physics, vol. 202, pp. 1405-1409, 2001.
    [5] Y. Tokiwa, B. P. Calabia, C. U. Ugwu, and S. Aiba, "Biodegradability of Plastics," International Journal of Molecular Sciences, vol. 10, pp. 3722-3742, 2009.
    [6] K. Kasuya, K. Takagi, S. Ishiwatari, Y. Yoshida, and Y. Doi, "Biodegradabilities of Various Aliphatic Polyesters in Natural Waters." Polymer Degradation & Stability, vol. 59, pp. 327-332, 1997.
    [7] J. P. Penning, H. Dijkstra, and A. J. Pennings, "Preparation and Properties of Absorbable Fibres from L-lactide Copolymers," Polymer, vol. 34, pp. 942-951, 1993.
    [8] A. C. Albertsson and I. K. Varma, "Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Applications," Biomacromolecules, vol. 4, pp. 1466-1486, 2003.
    [9] H. D. Kim, E. H. Bae, I. C. Kwon, R. R. Pal, J. D. Nam, and D. S. Lee, "Effect of PEG–PLLA Diblock Copolymer on Macroporous PLLA Scaffolds by Thermally Induced Phase Separation," Biomaterials, vol. 25, pp. 2319-2329, 2004.
    [10] S. J. Burns, "Stresses and Cracks in Spherulites from Transformation Strains," Scripta Materialia, vol. 35, pp. 925-931, 1996.
    [11] J. Martinez-Salazar, M. Sanchez-Cuesta, P. J. Barham, and A. Keller, "Thermal Expansion and Spherulite Cracking in 3-hydroxybutyrate/3-hydroxyvalerate Copolymers," Journal of Materials Science Letter, vol. 8, pp. 490-492, 1989.
    [12] J. K. Hobbs, T. J. McMaster, M. J. Miles, and P. J. Barham, "Cracking in Spherulites of Poly(hydroxybutyrate)," Polymer, vol. 37, pp. 3241-3246, 1996.
    [13] J. Zhang, Y. Duan, H. Sato, H. Tsuji, I. Noda, S. Yan, and Y. Ozaki, "Crystal Modifications and Thermal Behavior of Poly(l-lactic acid) Revealed by Infrared Spectroscopy." Macromolecules, vol. 38, pp. 8012-8021, 2005.
    [14] J. Zhang,. K. Tashiro,. H. Tsuji,. and A. J. Domb, "Investigation of Phase Transitional Behavior of Poly(L-lactide)/Poly(D-lactide) Blend Used to Prepare the Highly-Oriented Stereocomplex." Macromolecules, vol. 40, pp. 1049-1054, 2007.
    [15] P. Pan, B. Zhu, W. Kai, T. Dong, and Y. Inoue, "Effect of Crystallization Temperature on Crystal Modifications and Crystallization Kinetics of Poly(L-lactide)." Journal of Applied Polymer Science, vol. 107, pp. 54–62, 2008.
    [16] P. Pan, W. Kai, B. Zhu, T. Dong, and Yo. Inoue, "Polymorphous Crystallization and Multiple Melting Behavior of Poly(L-lactide): Molecular Weight Dependence." Macromolecules, vol. 40, pp. 6898-6905, 2007.
    [17] P. Pan, B. Zhu, W. Kai, T. Dong, and Y. Inoue, "Polymorphic Transition in Disordered Poly(L-lactide) Crystals Induced by Annealing at Elevated Temperatures." Macromolecules, vol. 41, pp. 4296-4304, 2008.
    [18] L. Bouapao, H. Tsuji, K. Tashiro, J. Zhang, M. Hanesaka, "Crystallization, Spherulite Growth, and Structure of Blends of Crystalline and Amorphous Poly(lactide)s." Polymer, vol. 50, pp. 4007–4017, 2009.
    [19] J. A. Shetter, "Effect of Stereoregularity on the Glass Temperatures of a Series of Polyacrylates and Polymethacrylates." Journal of Polymer Science Part B: Polymer Letters, vol. 1, pp. 209-213, 1963.
    [20] J. M. O’Reilly, H. E. Bair, and F. E. Karasz, "Thermodynamic Properties of Stereoregular Poly(methyl methacrylate)." Macromolecules, vol. 15, pp. 1083-1088, 1982.
    [21] D. J. Plazek and N. Raghupathi, "Influence of Stereochemical Structure on the Creep Behavior of Poly(methyl methacrylate)." Polymer Preprints American Chemical Society Division of Polymer Chemistry, vol. 15, pp. 53-57, 1974.
    [22] E. Roerdink and G. Challa, "Influence of Tacticity of Poly(methyl methacrylate) on the Compatibility with Poly(vinylidene fluoride)." Polymer, vol. 19, pp. 173-178, 1978.
    [23] J. W. Schurer, A. De Boer, and G. Challa, "Influence of Tacticity of Poly(methyl methacrylate) on the Compatibility with Poly(vinyl chloride)." Polymer, vol. 16, pp. 201-204, 1975.
    [24] E. J. Vorenkamp, G. T. Brinke, J. G. Meijer, H. Jager, and G. Challa, "Influence of the Tacticity of Poly(methyl methacrylate) on the Miscibility with Poly(vinyl chloride)." Polymer, vol. 26, pp. 1725-1732, 1985.
    [25] W. P. Hsu, "Influence of Tacticity of Poly(methyl methacrylate) on the Compatibility with Poly(vinyl phenol)." Journal of Applied Polymer Science, vol. 66, pp. 1773-1780, 1997.
    [26] W. P. Hsu, "Reexamination of the Miscibility of Stereoregular Poly(methyl methacrylate) with Poly(vinyl phenol)." Journal of Applied Polymer Science, vol. 83, pp. 1425-1431, 2002.
    [27] S. H. Li and E. M. Woo, "Immiscibility–Miscibility Phase Transitions in Blends of Poly(L-lactide) with Poly(methyl methacrylate)." Polymer International, vol. 57, pp. 1242-1251, 2008.
    [28] S. H. Li and E. M. Woo, "Effects of Chain Configuration on UCST Behavior in Blends of Poly(L-lactic acid) with Tactic Poly(methyl methacrylate)s." Journal of Polymer Science B: Polymer Physics, vol. 46, pp. 2355-2369, 2008.
    [29] M. Avella and E. Martuscelli, "Poly-D-(-)(3-hydroxybutyrate)/Poly(ethylene oxide) Blends: Phase Diagram, Thermal and Crystallization Behavior." Polymer, vol. 29, pp. 1731-1737, 1988.
    [30] M. Avella, E. Martuscelli, and M. Raimo, "The Fractionated Crystallization Phenomenon in Poly(3-hydroxybutyrate)/Poly(ethylene oxide) Blends." Polymer, vol. 34, pp. 3234-3240, 1993.
    [31] J. S. Yoon, C. S. Choi, S. J. Maing, H. J. Choi, H. S. Lee, and S. J. Choi, "Miscibility of Poly-d(-)(3-hydroxybutyrate) in Poly(ethylene oxide) and Poly(methyl methacrylate). European Polymer Journal, vol. 29, pp. 1359-1364, 1993.
    [32] J. W. You, H. J. Chiu, and T. M. Don, "Spherulitic Morphology and Crystallization Kinetics of Melt-miscible Blends of Poly(3-hydroxybutyrate) with Low Molecular Weight Poly(ethylene oxide)." Polymer, vol. 44, pp. 4355-4362, 2003.
    [33] E. Blümm and A. J. Owen, "Miscibility, Crystallization and Melting of Poly(3 hydroxybutyrate)/Poly(L-lactide) Blends." Polymer, vol. 36, pp. 4077-4081, 1995.
    [34] S. Nurkhamidah, and E. M. Woo, "Cracks and Ring Bands of Poly(3-hydroxybutyrate) on Pre-crystallized Poly(L-lactic acid) Template." Industrial Engineering Chemistry Research, vol. 50, pp. 4494-4503, 2011.
    [35] Y. T. Hsieh and E. M. Woo, "Phase Diagrams in Blends of Poly(3-hydroxybutyric acid) with Various Aliphatic Polyesters." Express Polymer Letters, vol. 5, pp. 570-580, 2011.
    [36] A. Siciliano, A. Seves, D. T. Marco, S. Cimmino, E. Martuscelli, and C. Silvestre, "Miscibility and Thermal and Crystallization Behaviors of Poly(D-(–)-3-hydroxybutyrate)/Atactic Poly(methyl methacrylate) Blends." Macromolecules, vol. 28, pp. 8065-8072, 1995.
    [37] S. Cimmino, P. Iodice, C. Silvestre, and F. E. Karasz, "Atactic Poly(methyl methacrylate) Blended with Poly(3- D(-)hydroxybutyrate): Miscibility and Mechanical Properties." Journal of Applied Polymer Science, vol. 75, pp. 746-753, 2000.
    [38] S. Cimmino, P. Iodice, E. Martuscelli, and C. Silvestre, "Poly(3-D(-)hydroxybutyrate)/Atactic Poly(methyl methacrylate) Blends: Morphology, Miscibility and Crystallization Relationships." Thermochimica Acta, vol. 321, pp. 89-98, 1998.
    [39] S. Nurkhamidah and E. M. Woo, “Correlation of Crack Patterns and Ring Bands in Spherulites of Low Molecular Weight Poly(L-lactic acid).” Colloid and Polymer Science, vol. 290, pp. 275-288, 2012.
    [40] F. J. Padden Jr. and H. D. Keith, “Spherulitic Crystallization in Polypropylene.” Journal of Applied Physics, vol. 30, pp. 1479-1484, 1959.
    [41] D. R. Norton and A. Keller, “The Spherulitic and Lamellar Morphology of Melt-Crystallized Isotactic Polypropylene.” Polymer, vol. 26, pp. 704-716, 1985.
    [42] D. Maillard and R. E. Prud’homme, “Differences Between Crystals Obtained in PLLA-rich or PDLA-rich Stereocomplex Mixtures.” Macromolecules, vol. 43, pp. 4006-4010, 2010.
    [43] H. Xu, C. Q. Teng, Z. P. Mao, and M. H. Yu, “Study on the Preparation and Properties of Lactic Acid Based Copolymer.” Journal of Polymer Research, vol. 9, pp. 9960-9965, 2012.
    [45] I. H. Huang, L. Chang, and E. M. Woo, “Tannin Induced Single Crystalline Morphology in Poly(ethylene succinate).” Macromolecular Chemistry and Physics, vol. 212, pp. 1155-1164, 2011.
    [46] S. Nurkhamidah, E. M. Woo, I. H. Huang, and C. C. Su, “Phase Behavior and Crystal Morphology in Poly(ethylene succinate) Biodegradably Modified with Tannin.” Colloid and Polymer Science, vol. 289, pp. 1563-1578, 2011.
    [47] V. Ferreiro, J. F. Douglas, J. A. Warren, and A. Karim, “Nonequilibrium Pattern Formation in the Crystallization of Polymer Blend Films.” Physical Review E, vol. 65, pp. 042802-4, 2002.
    [48] H. D. Keith, F. J. Padden, N. M. Walter, and H. W. Wyckoff, “Evidence for a Second Crystal form of Polypropylene.” Journal of Applied Physics, vol. 30, pp. 1485-1488, 1959.
    [49] A. Turner-Jones, J. M. Aizlewood, and D. R. Beckett, “Crystalline forms of Isotactic Polypropylene.” Die Makromolekulare Chemie, vol. 75, pp. 134-158, 1964.
    [50] A. Turner-Jones and A. J. Cobbold, “The β Crystalline form of Isotactic Polypropylene.” Journal of Polymer Science Part B: Polymer Letters, vol. 6, pp. 539-546, 1968.
    [51] F. L. Binsbergen and B. G. M. DeLange, “Morphology of Polypropylene Crystallized from the Melt.” Polymer, vol. 9, pp. 23-40, 1968.
    [52] J. Varga and G. W. Ehrenstein, “High-temperature Hedritic Crystallization of the β-modification of Isotactic Polypropylene.” Colloid and Polymer Science, vol. 275, pp. 511-519, 1997.
    [53] Y. F. Chen, E. M. Woo, and S. H. Li, “Dual Types of Spherulites in Poly(octamethylene terephthalate) Confined in Thin-film Growth.” Langmuir, vol. 24, pp. 11880-11888, 2008.
    [54] E. M. Woo and Y. F. Chen, “Single- and Double-ring Spherulites in Poly(nonamethylene terephthalate).” Polymer, vol. 50, pp. 4706-4717, 2009.
    [55] Y. F. Chen and E. M. Woo, “Annular Multi-shelled Spherulites in Interiors of Bulk-form Poly(nonamethylene terephthalate).” Macromolecular Rapid Communications, vol, 30, pp. 1911-1916, 2009.
    [56] E. M. Woo, S. Nurkhamidah, and Y. F. Chen, “Surface and Interior Views on Origins of Two Types of Banded Spherulites in Poly(nonamethylene terephthalate).” Physical Chemistry Chemical Physics, vol. 13, pp. 17841–17851, 2011.
    [57] K. C. Yen, E. M. Woo, and K. Tashiro, “Microscopic Fourier Transform Infrared Characterization on Two Types of Spherulite with Polymorphic Crystals in Poly(heptamethylene terephthalate).” Macromolecular Rapid Communications, vol. 31, pp. 1343-1347, 2010.
    [58] K. C. Yen, E. M. Woo, and K. Tashiro, “Six Types of Spherulite Morphologies with Polymorphic Crystals in Poly(heptamethylene terephthalate).” Polymer, vol. 51, pp. 5592-5603, 2010.
    [59] D. Braun, M. Jacobs, and G. P. Hellmann, “On the Morphology of Poly(vinylidene fluoride) Crystals in Blends.” Polymer, vol. 35, pp. 706-717, 1994.
    [60] K. Crämer, M. F. S. Lima, S. N. Magonov, E. H. Hellmann, M. Jacobs, and G. P. Hellmann, “Atomic Force Microscopy on Tree-like Crystals in Polyvinylidene Fluoride Blends.” Journal of Materials Science, vol. 33, pp. 2305-2312, 1998.
    [61] Z. Gan, H. Abe, and Y. Doi, “Biodegradable Poly(ethylene succinate) (PES). 1. Crystal Growth Kinetics and Morphology.” Biomacromolecules, vol. 1, pp. 704-712, 2000.
    [62] T. Iwata, Y. Doi, K. Isono, and Y. Yoshida, “Morphology and Enzymatic Degradation of Solution-grown Single Crystals of Poly(ethylene succinate).” Macromolecules, vol. 34, pp. 7343-7348, 2001.
    [63] K. Kawashima, R. Kawano, T. Miyagi, S. Umemoto, and N. Okui, “Morphological Changes in Flat-on and Edge-on Lamellae of Poly(Ethylene succinate) Crystallized from Molten Thin Films.” Journal of Macromolecular Science Part B—Physics, vol. B42, pp. 889–899, 2003.
    [64] J. M. Lu, Z. B. Qiu, and W. T. Yang, “Effects of Blend Composition and Crystallization Temperature on Unique Crystalline Morphologies of Miscible Poly(ethylene succinate)/Poly(ethylene oxide) Blends.” Macromolecules, vol. 41, pp. 141-148, 2008.
    [65] J. B. Zeng, Q. Y. Zhu, Y. D. Li, Z. C. Qiu, and Y. Z. Wang, “Unique crystalline/crystalline polymer blends of poly(ethylene succinate) and poly(p-dioxanone): miscibility and crystallization behaviors.” The Journal of Physical Chemistry B, vol. 114, pp. 14827–14833, 2010.
    [66] Z. Qiu, S. Fujinami, M. Komura, K. Nakajima, T. Ikehara, and T. Nishi, “Miscibility and Crystallization of Poly(ethylene succinate)/Poly(vinyl phenol) Blends.” Polymer, vol. 45, pp. 4515–4521, 2004.
    [67] E. M. Woo and S. Nurkhamidah, “Surface Nanopatterns of Two Types of Banded Spherulites in Poly(nonamethylene terephthalate) Thin Films.” The Journal of Physical Chemistry B, vol. 116, pp. 5071−5079, 2012.
    [68] A. G. Shtukenberg, Y. O. Punin, E. Gunn, and B. Kahr, "Spherulites." Chemical Reviews, vol. 112, pp. 1805-1838. 2012.
    [69] X. Wang, R. Liu, M. Wu, Z. Wang, and Y. Huang, "Effect of Chain Disentanglement on Melt Crystallization Behavior of Isotactic Polypropylene." Polymer, vol. 50, pp. 5824-5827, 2009.
    [70] H. Kajioka, M. Hikosaka, K. Taguchi, and A. Toda, "Branching and Re-orientation of Lamellar Crystals in Non-banded Poly(butene-1) Spherulites." Polymer, vol. 49, pp. 1685-1692, 2008.
    [71] D. Patel and D. C. Bassett, "On Spherulitic Crystallization and the Morphology of Melt-crystallized Poly(4-methylpentene-1)." Proceedings of the Royal Society of London A., vol. 445, pp. 577-595, 1994.
    [72] H. D. Keith and F. J. Padden, "Spherulitic Crystallization from the Melt. I. Fractionation and Impurity Segregation and Their Influence on Crystalline Morphology." Journal of Applied Physics, vol. 35, pp. 1270-1285, 1964.
    [73] A. Keller, "The Spherulitic Structure of Crystalline Polymers. Part I. Investigations with the Polarizing Microscope." Journal of Polymer Science, vol. 17, pp. 291-308, 1955.
    [74] H. M. Ye, J. Xu, B. H. Guo, and T. Iwata, "Left- or Right-Handed Lamellar Twists in Poly[(R)-3-hydroxyvalerate] Banded Spherulite: Dependence on Growth Axis." Macromolecules, vol. 42, pp. 694-701, 2009.
    [75] H. M. Ye, J. S. Wang, S. Tang, J. Xu, X. Q. Feng, B. H. Guo, X. M. Xie, J. J. Zhou, L. Li, Q. Wu, and G. Q. Chen, "Surface Stress Effects on the Bending Direction and Twisting Chirality of Lamellar Crystals of Chiral Polymer." Macromolecules, vol. 43, pp. 5762-5770, 2010.
    [76] J. Xu, B. H. Guo, J. J. Zhou, L. Li, J. Wu, and M. Kowalczuk, "Observation of Banded Spherulites in Pure Poly(l-lactide) and Its Miscible Blends with Amorphous Polymers." Polymer, vol. 46, pp. 9176-9185, 2005.
    [77] A. Toda, K. Taguchi, M. Hikosaka, and H. Kajioka, "Branching and Higher Order Structure in Banded Poly(vinylidene fluoride) Spherulites." Polymer Journal, vol. 40, pp. 905-909, 2008.
    [78] F. Zhang, J. Liu, H. Huang, B. Du, and T. He, "Branched Crystal Morphology of Linear Polyethylene Crystallized in a Two-dimensional Diffusion-controlled Growth Field." European Physical Journal E., vol. 8, pp. 289-297, 2002.
    [79] K. Taguchi, H. Miyaji, K. Izumi, A. Hoshino, Y. Miyamoto, and R. Kokawa, "Growth Shape of Isotactic Polystyrene Crystals in Thin Films." Polymer, vol. 42, pp. 7443-7447, 2001.
    [80] K. L. Beers, J. F. Douglas, E. J. Amis, and A. Karim, "Combinatorial Measurements of Crystallization Growth Rate and Morphology in Thin Films of Isotatctic Polystyrene." Langmuir, vol. 19, pp. 3935-3940, 2003.
    [81] K. Taguchi, A. Toda, and Y. Miyamoto, "Crystal Growth of Isotactic Polystyrene in Ultrathin Films: Thickness and Temperature Dependence." Journal of Macromolecular Science Physics, vol. 45, pp. 1141-1147, 2006.
    [82] X. Zhai, W. Wang, G. Zhang, and B. He, "Crystal Pattern Formation and Transitions of PEO Monolayers on Solid Substrates from Nonequilibrium to near Equilibrium." Macromolecules, vol. 39, pp. 324-329, 2006.
    [83] V. H. Mareau and R. E. Prud’homme, "In-Situ Hot Stage Atomic Force Microscopy Study of Poly(ε-caprolactone) Crystal Growth in Ultrathin Films." Macromolecules, vol. 38, pp. 398-408, 2005.
    [84] V. H. Mareau and R. E. Prud’homme, "Crystallization of Ultrthin Poly(ε-caprolactone) Films in the Presence of Residual Solvent, an In Situ Atomic Force Microscopy Study." Polymer, vol. 46, pp. 7255-7265, 2005.
    [85] G. Reiter, I. Botiz, L. Graveleau, N. Grozev, K. Albrecht, A. Mourran, et al. "Progress in understanding of polymer crystallization." New York: Springer-Verlag; 2007. pp. 179-200.
    [86] V. Ferreiro, J. F. Douglas, J. Warren, and A. Karim, "Growth Pulsations in Symmetric Dendritic Crystallization in Thin Polymer Blend Films." Physical Review E., vol. 65, pp. 051606-16, 2002.
    [87] B. C. Okerberg and H. Marand, "Crystal Morphologies in Thin Films of PEO/PMMA Blends." Journal of Materials Science, vol. 42, pp. 4521-4529, 2007.
    [88] B. C. Okerberg, H. Marand, and J. F. Douglas, "Dendritic Crystallization in Thin Films of PEO/PMMA Blends: A Comparison to Crystallization in Small Molecule Liquids." Polymer, vol. 49, pp. 579-587, 2008.
    [89] T. Iwata and Y. Doi, "Crystal Structure and Biodegradation of Aliphatic Polyester Crystals." Macromolecular Chemistry and Physics, vol. 200, pp. 2429–2442, 1999.
    [90] Z. Gan, H. Abe, and Y. Doi, "Biodegradable Poly(ethylene succinate) (PES). 2. Crystal Morphology of Melt-Crystallized Ultrathin Film and Its Change after Enzymatic Degradation." Biomacromolecules, vol. 1, pp. 713-720, 2000.
    [91] F. Y. Su, T. Iwata, K. Sudesh, and Y. Doi, "Electron and X-ray Diffraction Study on Poly(4-hydroxybutyrate)." Polymer, vol. 42, pp. 8915-8918, 2001.
    [92] J. R. Sun, X. S. Chen, C. L. He, and X. B. Jing, "Morphology and Structure of Single Crystals of Poly(ethylene glycol)-Poly(ε-caprolactone) Diblock Copolymers." Macromolecules, vol. 39, pp. 3717-3719, 2006.
    [93] B. Kalb and A. J. Penning, "General Crystallization Behaviour of Poly(L-lactic acid)." Polymer, vol. 21, pp. 607–612, 1980.
    [94] T. Miyata and T. Masuko, "Morphology of Poly(L-lactide) Solution-grown Crystals." Polymer, vol. 38, pp. 4003–4009, 1997.
    [95] T. Iwata and Y. Doi, "Morphology and Enzymatic Degradation of Poly(L-lactic acid) Single Crystals." Macromolecules, vol. 31, pp. 2461–2467, 1998.
    [96] W. K. Lee, J. K. Lee, and C. S. Ha, "Growth of Monolayered Poly(L-lactide) Lamellar Crystals on a Substrate." Macromolecular Research, vol. 11, pp. 511–513, 2003.
    [97] W. K. Lee and T. Iwata, "Morphological Study on Thermal Treatment and Degradation Behaviors of Solution-grown Poly(L-lactide) Single Crystals." Ultramicroscopy, vol. 108, pp. 1054–1057, 2008.
    [98] C. S. Fuller and C. L. Erickson, "An X-ray Study of Some Linear Polyesters." Journal of the American Chemical Society, vol. 59, pp. 344–351, 1937.
    [99] A. S. Ueda, Y. Chatani, and H. Tadokoro, "Structure Studies of Polyesters. IV. Molecular and Crystal Structure of Poly(ethylene succinate) and Poly(ethylene oxalate)." Polymer Journal, vol. 2, pp. 387–397, 1971.
    [100] E. M. Woo and P. L. Wu, "A Critical Assessment of Unbalanced Surface Stresses as the Mechanical Origin of Twisting and Scrolling of Polymer Crystals." Colloid and Polymer Science, vol. 284, pp. 357-365, 2006.
    [101] E. M. Woo, T. K. Mandal, and S. C. Lee, "Relationships Between Ringed Spherulitic Morphology and Miscibility in Blends of Poly(ε-caprolactone) with Poly(benzyl methacrylate) versus Poly(phenyl methacrylate)." Colloid and Polymer Science, vol. 278, pp. 1032-1042, 2000.
    [102] P. L. Wu, E. M. Woo, and H. L. Liu, "Ring-Banded Spherulites in Poly(pentamethylene terephthalate): A Model of Waving and Spiraling Lamellae." Journal of Polymer Science B: Polymer Physics, vol. 42, pp. 4421-4432, 2004.
    [103] Z. Wang, Y. Li, J. Yang, Q. Gou, Y. Wu, X. Wu, P. Liu, and Q. Gu, "Twisting of Lamellar Crystals in Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Ring-Banded Spherulites." Macromolecules, vol. 43, pp. 4441-4444, 2010.
    [104] Y. Duan, Y. Jiang, S. Jiang, L. Li, S. Yan, and J. M. Schultz, "Depletion-Induced Nonbirefringent Banding in Thin Isotactic Polystyrene Thin Films." Macromolecules, vol. 37, pp. 9283-9286, 2004.
    [105] Y. Duan, Y. Zhang, S. Yan, and J. M. Schultz, "In situ AFM Study of the Growth of Banded Hedritic Structures in Thin Films of Isotactic Polystyrene." Polymer, vol. 46, pp. 9015-9021, 2005.
    [106] Z. Wang, Z. Hu, Y. Chen, Y. Gong, H. Huang, and T. He, "Rhythmic Growth-Induced Concentric Ring-Banded Structures in Poly(ε-caprolactone) Solution-Casting Films Obtained at the Slow Solvent Evaporation Rate." Macromolecules, vol. 40, pp. 4381-4385, 2007.
    [107] Z. Wang, G. C. Alfonso, Z. Hu, J. Zhang, and and T. He, "Rhythmic Growth-Induced Ring-Banded Spherulites with Radial Periodic Variation of Thicknesses Grown from Poly(ε-caprolactone) Solution with Constant Concentration." Macromolecules, vol. 41, pp. 7584-7595, 2008.
    [108] Y. Li, H. Huang, T. He, and Z. Wang, "Coupling Between Crystallization and Evaporation Dynamics: Periodically Nonlinear Growth into Concentric Ringed Spherulites." Polymer, vol. 54, pp. 6628-6635, 2013.
    [109] Y. Wang, C. M. Chan, L. Li, and K. M. Ng, "Concentric-Ringed Structures in Polymer Thin Films." Langmuir, vol. 22, pp. 7384-7390, 2006.
    [110] Y. Li, H. Huang, T. He, and Z. Wang, "Rhythmic Growth Combined with Lamellar Twisting Induces Poly(ethylene adipate) Nested Ring-Banded Structures." ACS Macro Letters, vol. 1, pp. 154-158, 2012.
    [111] J. Chen and D. Yang, "Nature of the Ring-Banded Spherulites in Blends of Aromatic Poly(ether ketone)s." Macromolecular Rapid Communications, vol. 25, pp. 1425-1428, 2004.
    [112] J. Liu, H. M. Ye, J. Xu, and B. H. Guo, "Formation of ring-banded spherulites of α and β modifications in Poly(butylene adipate)." Polymer, vol. 52, pp. 4619-4630, 2011.
    [113] H. Kajioka, A. Hoshino, H. Miyaji, Y. Miyamoto, A. Toda, and M. Hikosaka, "Defects in Banded Spherulites of Polymers." Polymer, vol. 46, pp. 8717-8722, 2005.
    [114] E. M. Woo, K. C. Yen, and M. C. Wu, "Analysis of Multiple Melting Behavior of Spherulites Comprising Ring-Band Shell/Ringless Core in Polymorphic Poly(butylene adipate)." Journal of Polymer Science B: Polymer Physics, vol. 46, pp. 892-899, 2008.
    [115] Y. Li, H. Huang, Z. Wang, and T. He, "Tuning Radial Lamellar Packing and Orientation into Diverse Ring-Banded Spherulites: Effects of Structural Feature and Crystallization Condition." Macromolecules, vol. 47, pp. 1783-1792, 2014.
    [116] A. G. Shtukenberg, J. Freudenthal, and B. Kahr, "Reversible Twisting during Helical Hippuric Acid Crystal Growth." Journal of the American Chemical Society, vol. 132, pp. 9341-9349, 2010.
    [117] A. G. Shtukenberg, X. Cui, J. Freudenthal, E. Gunn, E. Camp, and B. Kahr, "Twisted Mannitol Crystals Establish Homologous Growth Mechanisms for High-Polymer and Small-Molecule Ring-Banded Spherulites." Journal of the American Chemical Society, vol. 134, pp. 6354-6364, 2012.
    [118] E. Gunn, R. Sours, J. B. Benedict, W. Kaminsky, and B. Kahr, "Mesoscale Chiroptics of Rhythmic Precipitates." Journal of the American Chemical Society, vol. 128, pp. 14234-14235, 2006.
    [119] X. Cui, A. L. Rohl, A. Shtukenberg, and B. Kahr, "Twisted Aspirin Crystals." Journal of the American Chemical Society, vol. 135, pp. 3395-3398, 2013.
    [120] A. Shtukenberg, J. Freundenthal, E. Gunn, L. Yu, and B. Kahr, "Glass-Crystal Growth Mode for Testosterone Propionate." Crystal Growth & Design, vol. 11, pp. 4458-4462, 2011.
    [121] Y. Oaki and H. Imai, "Emergence of helical morphologies with crystals: twisted growth under diffusion-limited conditions and chirality control with molecular recognition." Crystal Engineering Community, vol. 12, pp. 1679-1687, 2010.
    [122] A. Shtukenberg, E. Gunn, M. Gazzano, J. Freudenthal, E. Camp, R. Sours, E. Rosseeva, and B. Kahr, "Bernauer’s Bands." Chemical Physics and Physical Chemistry, vol. 12, pp. 1558-1571, 2011.
    [123] Y. Oaki and H. Imai, "Amplification of Chirality from Molecules into Morphology of Crystals through Molecular Recognition." Journal of the American Chemical Society, vol. 126, pp. 9271-9275, 2004.
    [124] G. Sun and C. M. Chan, "The Effects of the Low-molecular-weight Component on Banded Spherulites of Poly(L-lactic acid)." Colloid and Polymer Science, vol. 291, pp. 1495-1501, 2013.
    [125] A. M. El-Hadi, "Effect of Processing Conditions on the Development of Morphological Features of Banded or Nonbanded Spherulites of Poly(3-hydroxybutyrate) (PHB) and Polylactic Acid (PLLA) Blends." Polymer Engineering & Science, vol. 51, pp. 2191-2202, 2011.
    [126] S. Huang, H. Li, Y. Shang, D. Yu, G. Li, S. Jiang, X. Chen, and L. An, "Chloroform Micro-evaporation Induced Ordered Structures of Poly(L-lactide) Thin Films." RSC Advances, vol. 3, pp. 13705-13711, 2013.
    [127] S. Nurkhamidah and E. M. Woo, "Unconventional Non-birefringent or Birefringent Concentric Ring-Banded Spherulites in Poly(L-lactic acid) Thin Films." Macromolecular Chemistry and Physics, vol. 214, pp. 673-680, 2013.
    [128] K. L. Singfield, J. K. Hobbs, and A. Keller, "Correlation Between Main Chain Chirality and Crystal “Twist” Direction in Polymer Spherulites." Journal of Crystal Growth, vol. 183, pp. 683-689, 1998.
    [129] R. Hagiwara and Y. Ito, "Room Temperature Ionic Liquids of Alkylimidazolium Cations and Fluoroanions." Journal of Fluorine Chemistry, vol. 105, pp. 221-227, 2000.
    [130] J. H. Davis Jr. and P. A. Fox, "From Curiosities to Commodities: Ionic Liquids Begin the Transition." Chemical Communications, pp. 1209-1212. 2003.
    [131] J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer, G. A. Broker, and R. D. Rogers, "Characterization and Comparison of Hydrophilic and Hydrophobic Room Temperature Ionic Liquids Incorporating the Imidazolium Cation." Green Chemistry, vol. 3, pp. 156-164, 2001.
    [132] C. Baudequin, D. Brégeon, J. Levillain, F. Guillen, J. C. Plaquevent, and A. C. Gaumont, "Chiral Ionic Liquids, a Renewal for the Chemistry of Chiral Solvents? Design, Synthesis and Applications for Chiral Recognition and Asymmetric Synthesis." Tetrahedron: Asymmetry, vol. 16, pp. 3921– 3945, 2005.
    [133] J. Plaquevent, J. Levillain, F. Guillen, C. Malhiac, and A. Gaumont, "Ionic Liquids: New Targets and Media for α-Amino Acid and Peptide Chemistry." Chemical Reviews, vol. 108, pp. 5035– 5060, 2008.
    [134] H. Ohno and K. Fukumoto, "Amino Acid Ionic Liquids." Accounts of Chemical Reseasrch, vol. 40, pp. 1122– 1129, 2007.
    [135] L. He, G. H. Tao, D. A. Parrish, and J. M. Shreeve, "Slightly Viscous Amino Acid Ionic Liquids: Synthesis, Properties, and Calculations." The Journal of Physical Chemistry B, vol. 113, pp. 15162–15169. 2009.
    [136] Y. Ding, H. Tang, X. Zhang, S. Wu, and R. Xiong, "Antistatic Ability of 1-N-tetradecyl-3-methylimidazolium Bromide and Its Effects on the Structure and Properties of Polypropylene." European Polymer Journal, vol. 44, pp. 1247–1251, 2008.
    [137] M. P. Scott, C. S. Brazel, M. G. Benton, J. W. Mays, J. D. Holbrey, and R. D. Rogers, "Application of Ionic Liquids as Plasticizers for Poly(methyl methacrylate)." Chemical Communications, pp. 1370–1371, 2002.
    [138] F. Tong, H. Xu, J. Yu, L. Wen, J. Zhang, and J. He, "Plasticization of [C12MIM][PF6] Ionic Liquid on Foaming Performance of Poly(methyl methacrylate) in Supercritical CO2. Industrial Engineering Chemistry Research, vol. 51, pp. 12329−12336, 2012.
    [139] M. P. Scott, M. Rahman, and C. S. Brazel, "Application of Ionic Liquids as Low-volatility Plasticizers for PMMA." European Polymer Journal, vol. 39, pp. 1947–1953, 2003.
    [140] M. Rahman and C. S. Brazel, Ionic liquids: New Neneration Stable Plasticizers for Poly(vinyl chloride)." Polymer Degradation & Stability, vol. 91, pp. 3371-3382, 2006.
    [141] S. K. Chaurasia, R. K. Singh, and S. Chandra, "Effect of Ionic Liquid on the Crystallization Kinetics Behaviour of Polymer Poly(ethylene oxide)." Crystal Engineering Community, vol. 15, pp. 6022-6034, 2013.
    [142] Y. H. Kim, G. Cheruvally, J. W. Choi, J. H. Ahn, K. W. Kim, H. J. Ahn, D. S. Choi, and C. E. Song, "Electrochemical Properties of PEO-Based Polymer Electrolytes Blended with Different Room Temperature Ionic Liquids." Macromolecular Symposia, vol. 249–250, pp. 183-189, 2007.
    [143] D. F. Miranda, C. Versek, M. T. Tuominen, T. P. Russell, and J. J. Watkins, "Cross-Linked Block Copolymer/Ionic Liquid Self-Assembled Blends for Polymer Gel Electrolytes with High Ionic Conductivity and Mechanical Strength." Macromolecules, vol. 46, pp. 9313–9323, 2013.
    [144] C. Xing, M. Zhao, L. Zhao, J. You, X. Cao, and Y. Li, "Ionic Liquid Modified Poly(vinylidene fluoride): Crystalline structures, Miscibility, and Physical Properties." Polymer Chemistry, vol. 4, pp. 5726–5734, 2013.
    [145] H. Z. Chen, P. Li, and T. S. Chung, "PVDF/Ionic Liquid Polymer Blends with Superior Separation Performance for Removing CO2 from Hydrogen and Flue Gas." International Journal of Hydrogen Energy, vol. 37, pp. 11796-11804, 2012.
    [146] M. Cai, Y. Liang, M. Yao, Y. Xia, F. Zhou, and W. Liu, "Imidazolium Ionic Liquids As Antiwear and Antioxidant Additive in Poly(ethylene glycol) for Steel/Steel Contacts." ACS Applied Materials Interfaces, vol. 2, pp. 870–876, 2010.
    [147] P. Zhang, L. Peng, and W. Li, "Application of Ionic Liquid [bmim]PF6 as Green Plasticizer for Poly(L-lactide)." e-Polymers, vol. 8, pp. 1970–1975, 2008.
    [148] K. Park, J. U. Ha, and M. Xanthos, "Ionic Liquids as Plasticizers/Lubricants for Polylactic Acid." Polymer Engineering & Science, vol. 50, pp. 1105–1110, 2010.
    [149] L. H. Sperling, Introduction to Physical Polymer Science, Fourth ed. Canada: John Wiley & Sons, Inc., 2006
    [150] T. G. Fox, "Influence of Diluent and Copolymer Composition on the Glass Transition Temperature of a Polymer System," Bulletin of the American Physical Society, vol. 1, pp. 123, 1956.
    [151] M. Gordon and J. S. Taylor, "Ideal Copolymers and the Second-Order Transitions of Synthetic Rubbers. i. Non-Crystalline Copolymers," Journal of Applied Chemistry, vol. 2, pp. 493-500, 1952.
    [152] P. R. Couchman, "Compositional Variation of Glass-Transition Temperatures. 2. Application of the Thermodynamic Theory to Compatible Polymer Blends," Macromolecules, vol. 11, pp. 1156-1161, 1978.
    [153] P. R. Couchman and F. E. Karasz, "A Classical Thermodynamic Discussion of the Effect of Composition on Glass-Transition Temperatures," Macromolecules, vol. 11, pp. 117-119, 1978.
    [154] P. R. Couchman, "Composition Variation of Glass-Transition Temperatures. 7. Copolymers," Macromolecules, vol. 15, pp. 770-773, 1982.
    [155] T. K. Kwei, "The Effect of Hydrogen Bonding on the Glass Transition Temperatures of Polymer Mixtures," Journal of Polymer Science: Polymer Letters Edition, vol. 22, pp. 307-313, 1984.
    [156] G. Braun and A. J. Kovacs, "Variations in the Glass Transition Temperature of Binary Systems of Statistical Distribution. In: Prins JA, editor. Physiscs of Non-crystalline Solids," Proceedings of the International Conference, vol. 1964, pp. 303-318, 1965.
    [157] J. S. Lee, A. A. Prabu, and K. J. Kim, "UCST-Type Phase Separation and Crystallization Behavior in Poly(vinylidene fluoride)/Poly(methyl methacrylate) Blends under an External Electric Field," Macromolecules, vol. 42, pp. 5660-5669, 2009.
    [158] S. H. Li and E. M. Woo, “Immiscibility with Upper-critical Solution Temperature Phase Diagrams for Poly(methyl methacrylate)/Polyesters Blends.” Colloid and Polymer Science, vol. 286, pp. 253–265, 2008.
    [159] J. D. Hoffman, G. T. Davis, and J. I. Lauritzen Jr., Treatise on Solid State Chemistry, Crystalline and Noncrystalline Solids, N. B. Hannay ed. vol. 3. New York: Plenum, 1976.
    [160] P. J. Flory and A. Vrij, “Melting Points of Linear-Chain Homologs. The Normal Paraffin Hydrocarbons.” Journal of the American Chemical Society, vol. 85, pp. 3548–3553, 1963.
    [161] J. D. Hoffman and J. J. Weeks, “Melting Process and the Equilibrium Melting Temperature of Polychlorotrifluoroethylene.” Journal of Research of the National Bureau of Standards, vol. 66A, pp. 13-28, 1962.
    [162] D. C. Bassett, A. Keller, and S. Mitsuhashi, "New Features in Polymer Crystal Growth from Concentrated Solutions," Journal of Polymer Science Part A: General Papers, vol. 1, pp. 763-788, 1963.
    [163] P. H. Geil, Growth and Perfection of Crystals, Doremus, R. H., Roberts, B. W., and Turnbull, D. eds. ed. New York: Wiley, 1958.
    [164] H. D. Keith, "On the Relation between Different Morphological Forms in High Polymers," Journal of Polymer Science Part A: General Papers, vol. 2, pp. 4339-4360, 1964.
    [165] F. Khoury and Passaglia, Treatise on Solid State Chemistry, Crystalline and Noncrystalline Solids, N. B. Hannay ed. vol. 3. New York: Plenum, 1976.
    [166] E. Martuscelli, Multicomponent Polymer Blends Symposium, Capri, Italy, May 1983.
    [167] R. S. Stein, F. B. Khambatta, F. P. Warner, T. Russell, A. Escala and E. Balizer, “X-ray and optical studies of the morphology of polymer blends.” Journal of Polymer Science: Polymer Symposia, vol. 63, pp. 313–328, 1978.
    [168] A. J. Kovacs, J. A. Manson, and D. Levy, Kolloid Z., vol. 214, pp. 1, 1966.
    [169] P. J. Flory, "On the Morphology of the Crystalline State in Polymers," Journal of the American Chemical Society, vol. 84, pp. 2857-2867, 1962.
    [170] L. A. Utracki, “Glass Transition Temperature in Polymer Blends.” Advances in Polymer Technology, vol. 5, pp. 33-39, 1985.
    [171] S. K. Roy, G. R. Brown, and L. E. St-Pierre, “The Influence of Thermodynamic Interactions on the Glass Transition of Poly (Vinyl Chloride)-Benzylbutylphthalate Mixtures.” International Journal of Polymeric Materials and Polymeric Biomaterials, vol. 10, pp. 13-20, 1983.
    [172] A. K. Nandi, B. M. Mandal, S. N. Bhattacharyya, and S. K. Roy, “On the Occurrence of Cusps in the Tg-Composition Diagrams of Compatible Polymer Pairs.” Polymer Communications, vol. 27, pp. 151-154, 1986.
    [173] M. Aubin and R. E. Prud'homme, “Analysis of the Glass Transition Temperature of Miscible Polymer Blends.” Macromolecules, vol. 21, pp. 2945-2949, 1988.
    [174] M. C. Righetti, G. Ajroldi, and G. Pezzin, “The Glass Transition Temperature of Polymer-diluent Systems.” Polymer, vol. 33, pp. 4779-4785, 1992.
    [175] M. C. Righetti, G. Ajroldi, and G. Pezzin, “Glass Transition of Binary Systems: Peculiarities at Low Temperature.” Polymer, vol. 33, pp. 4786-4792, 1992.
    [176] M. C. Righetti, G. Ajroldi, G. Marchionni, and G. Pezzin, “Peculiarities of the Glass Transition Temperature of Binary Polymeric Systems: Entropic and Enthalpic Treatments.” Polymer, vol. 34, pp. 4307-4313, 1993.
    [177] A. J. Kovacs, “Transition vitreuse dans les polymères amorphes. Etude phénoménologique.” Advances in Polymer Science, vol. 3, pp. 394-507, 1963.
    [178] E. M. Woo and C. P. Chiang, “Glass Transition Behavior and Miscibility in Blends of Poly(vinyl p-phenol) with two Homologous Aliphatic Polyesters.” Polymer, vol. 45, pp. 8415-8424, 2004.
    [179] Y. W. Cheung and R. S. Stein, “Critical Analysis of the Phase Behavior of Poly(ε-capro1actone) (PCL)/Polycarbonate (PC) Blends.” Macromolecules, vol. 27, pp. 2512-2519, 1994.
    [180] Y. H.Kuo, E. M. Woo, and T. Y. Kuo, “Completely Miscible Blend of Poly(trimethylene terephthalate) with Poly(ether imide).” Polymer Journal, vol. 33, pp. 920-926, 2001.
    [181] K. M. O’Connor and K. M. Scholsky, “Free Volume Effects on the Melt Viscosity of Low Molecular Weight Poly(methyl methacrylate).” Polymer, vol. 30, pp. 461-466, 1989.
    [182] P. J. Bharam, A. Keller, E. L. Otun, and P. A. Holmes, “Crystallization and Morphology of a Bacterial Thermoplastic: Poly-3-hydroxybutyrate.” Journal of Materials Science, vol. 19, pp. 2781-2794, 1984.
    [183] D. W. Van Krevelen, Properties of Polymers: Correlations with Chemical Structure, Amsterdam: Elsevier, 1976.
    [184] W. Wunderlich, Polymer Handbook, New York: John Wiley and Sons, 1999.
    [185] A. A. Hasan, “Crystallization and Morphology of Poly(ethylene succinate) and Poly(β-hydroxybutyrate) Blends.” Polymer Bulletin, vol. 41, pp. 593-600, 1998.
    [186] L. Zhang, S. H. Goh, and S. Y. Lee, “Miscibility and Crystallization Behaviour of Poly(l-lactide)/Poly(p-vinylphenol) Blends.” Polymer, vol. 39, pp. 4841-4847, 1998.
    [187] T. Shirahase, Y. Komatsu, H. Marubayashi, Y. Tominaga, S. Asai, and M. Sumita, “Miscibility and Hydrolytic Degradation in Alkaline Solution of Poly(L-lactide) and Poly( p-vinyl phenol) Blends.” Polymer Degradation & Stability, vol. 92, pp. 1626-1631, 2007.
    [188] S. Nurkhamidah and E. M. Woo, “Effects of Crystallinity and Molecular Weight on Crack Behavior in Crystalline Poly(L-lactic acid).” Journal of Applied Polymer Science, vol. 122, pp. 1976–1985, 2011.
    [189] D. Maillard and R. E. Prud’homme, “The Crystallization of Ultrathin Films of Polylactides — Morphologies and Transitions.” Canadian Journal of Chemistry, vol. 86, pp. 556-563, 2008.
    [190] D. N. Theodorou, “Variable-density Model of Polymer Melt Surfaces: Structure and Surface Tension.” Macromolecules, vol. 22, pp. 4578-4589, 1989.
    [191] K. F. Mansfield and D. N. Theodorou, “Atomistic Simulation of a Glassy Polymer/graphite Interface.” Macromolecules, vol. 24, pp. 4295-4309, 1991.
    [192] K. F. Mansfield and D. N. Theodorou, “Atomistic Simulation of a Glassy Polymer Surface.” Macromolecules, vol. 23, pp. 4430-4445, 1990.
    [193] V. A. Harmandaris, K. C. Kaoulas, and V. G. Mavrantzas, “Molecular Dynamics Simulation of a Polymer Melt/solid Interface: Local Dynamics and Chain Mobility in a Thin Film of Polyethylene Melt Adsorbed on Graphite.” Macromolecules, vol. 38, pp. 5796-5809, 2005.
    [194] C. M. Chan and L. Li, “Direct Observation of the Growth of Lamellae and Spherulites by AFM.” Advances in Polymer Science, vol. 188, pp. 1–41, 2005.
    [195] J. Xu, B. H. Guo, Z. M. Zhang, J. J. Zhou, Y. Jiang, S. Yan, L. Li, Q. Wu, G. Q. Chen, and J. M. Schultz, “Direct AFM Observation of Crystal Twisting and Organization in Banded Spherulites of Chiral Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate).” Macromolecules, vol. 37, pp. 4118-4123, 2004.
    [196] S. Nurkhamidah and E. M. Woo, “Phase-Separation-Induced Single-Crystal Morphology in Poly(L-lactic acid) Blended with Poly(1,4-butylene adipate) at Specific Composition.” The Journal of Physical Chemistry B, vol. 115, pp. 13127–13138, 2011.
    [197] Y. Li, H. Huang, T. He, Z. Wang, "Band-to-Nonband Transition into Unique Poly(ε-caprolactone) Crystals by Modulating the Interplay of Diffusion and Growth." ACS Macro Letters, vol. 1, pp. 718-722, 2012.
    [198] Y. Wang, C. M. Chan, K. M. Ng, and L. Li, "What Controls the Lamellar Orientation at the Surface of Polymer Films during Crystallization?." Macromolecules, vol. 41, pp. 2548-2553, 2008.
    [199] H. Hu and D. L. Dorset, "Crystal structure of poly(ε-caprolactone)." Macromolecules, vol. 23, pp. 4604-4607, 1990.

    下載圖示 校內:2018-08-27公開
    校外:2018-08-27公開
    QR CODE