| 研究生: |
許聖民 Hsu, Sheng-Min |
|---|---|
| 論文名稱: |
應用小鼠之實驗性自體免疫性葡萄膜視網膜炎動物模型開發對自體免疫葡萄膜炎的新穎免疫治療法 Development of novel immune mechanism-based therapies for autoimmune uveitis using a mouse model of experimental autoimmune uveitis |
| 指導教授: |
謝奇璋
Shieh, Chi-Chang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 實驗性自體免疫葡萄膜炎 、前房相關免疫偏移 、容忍性抗原表現細胞 |
| 外文關鍵詞: | experimental autoimmune uveitis, tolerogenic antigen presenting cells, proteasome inhibitors, reactive oxygen species |
| 相關次數: | 點閱:112 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的主要目的是探討是否能利用體外產生之容忍性抗原表現細胞或其他藥物如Bortezomib或N-acetylcysteine (NAC)之治療減緩改善小鼠之實驗性自體免疫性葡萄膜炎,並探討可能之作用機轉,希望將來應用在人類上,達到治療人類自體免疫性葡萄膜炎之目的。葡萄膜炎是指眼球之葡萄膜組織的發炎,若是自體免疫所引起,目前常用類固醇治療。然而,類固醇治療並不一定會成功地抑制葡萄膜炎,且長期使用類固醇治療也會引發明顯且嚴重之副作用,例如白內障或青光眼。因此,尋找其他的治療方法成為重要的課題。在過去幾年間我們利用C57BL/6(B6)小鼠的實驗性自體免疫葡萄膜炎之動物模型模擬人類之自體免疫性葡萄膜炎,利用不同治療策略與方法達到治療人類自體免疫性葡萄膜炎之目的。本研究分成三部分:第一部分是利用體外產生之容忍性抗原表現細胞做治療。因為之前研究發現”前房相關免疫偏移”(ACAID)即眼前房內打入自體免疫抗原可抑制自體免疫疾病之發生,因此我們使用”轉化生長因子”(TGF-β2)處理過之容忍性抗原表現細胞治療發現也可以減緩小鼠實驗性自體免疫葡萄膜炎之發生。在第二部分,細胞內的Ubiquitin-Porteasome系統(UPS)是細胞用來分解蛋白質之重要工具,可維持細胞之恆定,在NF-κB路徑中,IκB分子原本和NF-κB分子結合,受外界刺激時IκB分子會被接上ubiquitin後經由UPS系統所分解,此時NF-κB分子就會活化進入細胞核內使細胞對外界刺激產生反應。由於NF-κB是產生免疫反應的重要路徑,因此如果抑制proteasome則會經由UPS系統進而抑制NF-κB與免疫反應之進行,達到治療人類自體免疫性葡萄膜炎之目的。本研究探討是否使用proteasome抑制劑bortezomib可抑制小鼠實驗性自體免疫葡萄膜炎之發生並探討其作用機制。在第三部分是有關Ncf1基因與葡萄膜炎相關之研究。Ncf1基因產生的蛋白質是NADPH氧化酶複合物的重要成份。Ncf1基因突變已知會引起慢性肉芽腫性疾病,其身上的嗜中性球與巨噬細胞將無法殺死入侵的病原菌。之前研究還發現Ncf1基因突變與關節炎、腦脊髓炎等自體免疫疾病有關,因此在本研究我們想探討Ncf1基因在小鼠之實驗性自體免疫葡萄膜炎之角色,且試著將研究結果用於治療上。
在結果方面,首先我們成功地在C57BL/6小鼠身上誘發實驗性自體免疫葡萄膜炎(EAU),此動物模型可用於此研究探討眼睛自體免疫疾病機制與可能的治療方法之研究。接著我們發現注射容忍性抗原表現細胞的小鼠發生實驗性自體免疫葡萄膜炎的機率顯著減少,且較慢發生,嚴重程度也較小。當我們將從容忍性抗原表現細胞治療後之C57BL/6小鼠取出之脾臟T細胞注射到B6小鼠可抑制新的實驗性自體免疫葡萄膜炎之發生,且必需注射CD8+T細胞才有此效果,而非CD4+T細胞。因此,容忍性抗原表現細胞將是未來治療實驗性自體免疫葡萄膜炎的新方法。接著我們發現在proteasome抑制劑bortezomib治療的小鼠將表現出明顯減弱之實驗性自體免疫葡萄膜炎反應。接著我們在NF-κB相關的發炎介質研究結果顯示:小鼠誘發實驗性自體免疫葡萄膜炎後其NF-κB相關的發炎介質例如TNF-α, IL-1α, IL-1β, IL-12, IL-17, MCP-1與iNOS表現會上升,但是經過proteasome抑制劑bortezomib治療後其NF-κB相關的發炎介質表現會顯著下降。最後,在NF-κB與proteasome活性分析研究結果,在小鼠誘發實驗性自體免疫葡萄膜炎後其NF-κB的活化與proteasome活性會較正常B6小鼠上升,但經過proteasome抑制劑bortezomib治療後其NF-κB的活化與proteasome的活性都會顯著下降。因此proteasome抑制劑bortezomib的治療將會是未來治療自體免疫葡萄膜炎之新方法。最後我們研究發現相對於正常B6小鼠,在缺乏p47蛋白質之Ncf1突變小鼠會表現明顯減弱之實驗性自體免疫葡萄膜炎反應。我們發現將來自基因正常B6且已誘發實驗性自體免疫葡萄膜炎之小鼠身上的CD4+T細胞轉移至Ncf1基因突變小鼠身上會誘發微弱之實驗性自體免疫葡萄膜炎反應,同樣地,當我們將來自Ncf1基因突變且已誘發實驗性自體免疫葡萄膜炎之小鼠身上的CD4+T細胞轉移至基因正常之B6小鼠身上會誘發微弱之實驗性自體免疫葡萄膜炎反應。證明包括捐贈者之CD4+T細胞與接受者之B6小鼠都需表現Ncf1基因才會正常誘發實驗性自體免疫葡萄膜炎反應。而且在本研究也發現在Ncf1基因突變之C57BL/6小鼠身上誘發實驗性自體免疫葡萄膜炎時其視網膜上之TNF-α分泌會顯著減少,如果使用抑制ROS產生之藥物N-acetylcysteine (NAC) 治療則實驗性自體免疫葡萄膜炎也會明顯減弱,與Ncf1基因突變之小鼠表現很類似,因此調控小鼠ROS之表現可能將會是未來治療自體免疫葡萄膜炎之新方法。
The purpose of this study is to ameliorate experimental autoimmune uveitis (EAU) in mice as an animal model with tolerogenic antigen presenting cells (TolAPC) or other drugs including proteasome inhibitor bortezomib and N-acetylcysteine and then to investigate the mechanisms. Uveitis refers to inflammation of the uveal tissues and can cause significant ocular morbidities in individuals with protracted diseases. Clinical courses refractory to conventional treatment with corticosteroids are not uncommon, and the adverse effects associated with steroids, such as cataracts and glaucoma, preclude its chronic use. Therefore, investigating the disease mechanisms and searching for alternative treatments for uveitis remain important issues.
Experimental autoimmune uveitis (EAU) is a rodent model of human uveoretinitis. Here, we want to treat experimental autoimmune uveitis (EAU) in mice as an animal model with different novel immune mechanism-based strategies. In the first part, it is well known that inoculation of antigen into the anterior chamber (a.c.) of a mouse eye induces Anterior Chamber Associated Immune Deviation (ACAID), which in part is mediated by antigen specific local and peripheral tolerance to the inciting antigen. ACAID can also be induced in vivo by inoculation ( i.v.) of ex-vivo generated tolerogenic antigen presenting cells (TolAPC). Therefore, we plan to test if ex-vivo generated retinal antigen pulsed TolAPC could suppress established experimental autoimmune uveitis (EAU) or not. In the second part, bortezomib is a proteasome inhibitor used for hematologic cancer treatment. Since it can suppress NF-κB activation, which is critical for the inflammatory process, bortezomib has been found to possess anti-inflammatory activity. Therefore, we evaluated the effect of bortezomib on experimental autoimmune uveitis (EAU) in mice and investigated the potential mechanisms related to NF-κB inactivation. In the third part, The Ncf1 protein is an essential component of the NADPH oxidase complex that catalyzes the transfer of a single electron from NADPH to oxygen and generates reactive oxygen species (ROS). The mutation of Ncf1 gene is related to chronic granulomatous disease (CGD), a rare genetic disorder characterized by severe recurrent infections due to the inability of neutrophils and macrophages to mount a respiratory burst and thereby kill the invading pathogens. However, enhanced autoimmunity, arthritis, and encephalomyelitis in mice with a reduced oxidative burst due to a mutation in the Ncf1 gene were reported. Therefore, we postulate that Ncf1 gene also plays an important role in experimental autoimmune uveitis in mice.
As the result, first of all, we established an experimental autoimmune uveitis (EAU) mouse model to address the mechanisms and potential methods of treatment for ocular autoimmune diseases in this study. Then, in the first part, I found that IRBP1-20-pulsed TolAPC suppressed the incidence and severity of the clinical expression of EAU and reduced the expression of associated inflammatory mediators. Moreover, extract of whole retina could replace human IRBP1-20 as antigen in the preparation of TolAPC used to induce tolerance in EAU mice. The suppression of EAU could be transferred to a new set of EAU mice with CD8+ but not with CD4+ Treg cells. In the second part, we found that the EAU is ameliorated by high-dose bortezomib treatment when compared with low-dose bortezomib or PBS treatment. The DNA-binding activity of NF-κB was suppressed and expression of several key inflammatory mediators including TNF-α, IL-1α, IL-1β, IL-12, IL-17, MCP-1, and iNOS were lowered in the high-dose bortezomib treated group. In the third part, we found that the EAU response became much milder in Ncf1-mutant mice. Adoptive transfer of CD4+ T cells from wild-type EAU mice induced partial EAU response in Ncf1 mutant naïve mice. Adoptively transfer of CD4+ T cells from Ncf1 mutant EAU mice also induced partial EAU response in naïve B6 mice. It meant that the Ncf1 gene expression in both donor CD4+ T cells and recipient B6 mice contributed to EAU induction. Finally, we treated the EAU B6 mice with N-acetylcysteine (NAC) i.p. every other day to suppress the ROS production as in Ncf1-mutant mice. We found the EAU response was ameliorated in NAC treated mice as in Ncf1-mutant EAU mice. Therefore, NAC treatment with ameliorated ROS production seems to be a novel immune mechanism-based therapy for autoimmune uveitis.
In conclusion, we find many potential novel immune mechanism-based treatment strategies for human uveoretinitis including tolerogenic antigen presenting cells (TolAPC) with retinal extract as antigen, proteasome inhibitor bortezomib with NF-κB inactivation, and N-acetylcysteine (NAC) for ROS suppression as in Ncf1 mutant mice. We hope these novel immune mechanism-based therapies could be applied for autoimmune uveitis treatment in human in the future.
Adams, J. (2004a). The development of proteasome inhibitors as anticancer drugs. Cancer Cell 5, 417-421.
Adams, J. (2004b). The proteasome: a suitable antineoplastic target. Nat Rev Cancer 4, 349-360.
Agarwal, R.K., and Caspi, R.R. (2004). Rodent models of experimental autoimmune uveitis. Methods Mol Med 102, 395-419.
Apte, R.S., Sinha, D., Mayhew, E., Wistow, G.J., and Niederkorn, J.Y. (1998). Cutting edge: role of macrophage migration inhibitory factor in inhibiting NK cell activity and preserving immune privilege. J Immunol 160, 5693-5696.
Avichezer, D., Silver, P.B., Chan, C.C., Wiggert, B., and Caspi, R.R. (2000). Identification of a new epitope of human IRBP that induces autoimmune uveoretinitis in mice of the H-2b haplotype. Invest Ophthalmol Vis Sci 41, 127-131.
Bilsborough, J., George, T.C., Norment, A., and Viney, J.L. (2003). Mucosal CD8alpha+ DC, with a plasmacytoid phenotype, induce differentiation and support function of T cells with regulatory properties. Immunology 108, 481-492.
Bontscho, J., Schreiber, A., Manz, R.A., Schneider, W., Luft, F.C., and Kettritz, R. (2011). Myeloperoxidase-specific plasma cell depletion by bortezomib protects from anti-neutrophil cytoplasmic autoantibodies-induced glomerulonephritis. J Am Soc Nephrol 22, 336-348.
Brambilla, R., Ashbaugh, J.J., Magliozzi, R., Dellarole, A., Karmally, S., Szymkowski, D.E., and Bethea, J.R. (2011). Inhibition of soluble tumour necrosis factor is therapeutic in experimental autoimmune encephalomyelitis and promotes axon preservation and remyelination. Brain 134, 2736-2754.
Bryant, C.D. (2011). The blessings and curses of C57BL/6 substrains in mouse genetic studies. Ann N Y Acad Sci 1245, 31-33.
Bryant, C.D., Zhang, N.N., Sokoloff, G., Fanselow, M.S., Ennes, H.S., Palmer, A.A., and McRoberts, J.A. (2008). Behavioral differences among C57BL/6 substrains: implications for transgenic and knockout studies. J Neurogenet 22, 315-331.
Busch, M., Bauer, D., Hennig, M., Wasmuth, S., Thanos, S., and Heiligenhaus, A. (2013). Effects of systemic and intravitreal TNF-alpha inhibition in experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci 54, 39-46.
Caspi, R. (2008). Autoimmunity in the immune privileged eye: pathogenic and regulatory T cells. Immunol Res 42, 41-50.
Caspi, R.R. (2010). A look at autoimmunity and inflammation in the eye. J Clin Invest 120, 3073-3083.
Chen, F.T., Liu, Y.C., Yang, C.M., and Yang, C.H. (2012). Anti-inflammatory effect of the proteasome inhibitor bortezomib on endotoxin-induced uveitis in rats. Invest Ophthalmol Vis Sci 53, 3682-3694.
Chen, X., Kezic, J., Bernard, C., and McMenamin, P.G. (2013). Rd8 mutation in the Crb1 gene of CD11c-eYFP transgenic reporter mice results in abnormal numbers of CD11c-positive cells in the retina. J Neuropathol Exp Neurol 72, 782-790.
Cousins, S.W., McCabe, M.M., Danielpour, D., and Streilein, J.W. (1991). Identification of transforming growth factor-beta as an immunosuppressive factor in aqueous humor. Invest Ophthalmol Vis Sci 32, 2201-2211.
D'Orazio, T.J., and Niederkorn, J.Y. (1998). Splenic B cells are required for tolerogenic antigen presentation in the induction of anterior chamber-associated immune deviation (ACAID). Immunology 95, 47-55.
de Heer, H.J., Hammad, H., Soullie, T., Hijdra, D., Vos, N., Willart, M.A., Hoogsteden, H.C., and Lambrecht, B.N. (2004). Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. J Exp Med 200, 89-98.
Delgado, M. (2009). Generating tolerogenic dendritic cells with neuropeptides. Hum Immunol 70, 300-307.
Dick, L.R., and Fleming, P.E. (2010). Building on bortezomib: second-generation proteasome inhibitors as anti-cancer therapy. Drug Discov Today 15, 243-249.
Esseltine, D.L., and Mulligan, G. (2012). An historic perspective of proteasome inhibition. Semin Hematol 49, 196-206.
Faunce, D.E., Sonoda, K.H., and Stein-Streilein, J. (2001). MIP-2 recruits NKT cells to the spleen during tolerance induction. J Immunol 166, 313-321.
Faunce, D.E., and Stein-Streilein, J. (2002). NKT cell-derived RANTES recruits APCs and CD8+ T cells to the spleen during the generation of regulatory T cells in tolerance. J Immunol 169, 31-38.
Faunce, D.E., Terajewicz, A., and Stein-Streilein, J. (2004). Cutting edge: in vitro-generated tolerogenic APC induce CD8+ T regulatory cells that can suppress ongoing experimental autoimmune encephalomyelitis. J Immunol 172, 1991-1995.
Ferguson, T.A., and Griffith, T.S. (2007). The role of Fas ligand and TNF-related apoptosis-inducing ligand (TRAIL) in the ocular immune response. Chem Immunol Allergy 92, 140-154.
Forrester, J.V., Klaska, I.P., Yu, T., and Kuffova, L. (2013). Uveitis in mouse and man. Int Rev Immunol 32, 76-96.
Fu, B.M., He, X.S., Yu, S., Hu, A.B., Ma, Y., Wu, L.W., Tam, N.L., and Huang, J.F. (2009). Tolerogenic semimature dendritic cells induce effector T-cell hyporesponsiveness by the activation of antigen-specific CD4+ CD25+ T-regulatory cells. Exp Clin Transplant 7, 149-156.
Gasparin, F., Takahashi, B.S., Scolari, M.R., Pedral, L.S., and Damico, F.M. (2012). Experimental models of autoimmune inflammatory ocular diseases. Arq Bras Oftalmol 75, 143-147.
Geissmann, F., Gordon, S., Hume, D.A., Mowat, A.M., and Randolph, G.J. (2010). Unravelling mononuclear phagocyte heterogeneity. Nat Rev Immunol 10, 453-460.
Gelderman, K.A., Hultqvist, M., Pizzolla, A., Zhao, M., Nandakumar, K.S., Mattsson, R., and Holmdahl, R. (2007). Macrophages suppress T cell responses and arthritis development in mice by producing reactive oxygen species. J Clin Invest 117, 3020-3028.
Gilmore, T.D. (2006). Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25, 6680-6684.
Gomez, A.M., Vrolix, K., Martinez-Martinez, P., Molenaar, P.C., Phernambucq, M., van der Esch, E., Duimel, H., Verheyen, F., Voll, R.E., Manz, R.A., et al. (2011). Proteasome inhibition with bortezomib depletes plasma cells and autoantibodies in experimental autoimmune myasthenia gravis. J Immunol 186, 2503-2513.
Granstein, R.D., Staszewski, R., Knisely, T.L., Zeira, E., Nazareno, R., Latina, M., and Albert, D.M. (1990). Aqueous humor contains transforming growth factor-beta and a small (less than 3500 daltons) inhibitor of thymocyte proliferation. J Immunol 144, 3021-3027.
Gregerson, D.S., Heuss, N.D., Lehmann, U., and McPherson, S.W. (2009). Peripheral induction of tolerance by retinal antigen expression. J Immunol 183, 814-822.
Griffith, T.S., Brincks, E.L., Gurung, P., Kucaba, T.A., and Ferguson, T.A. (2011). Systemic immunological tolerance to ocular antigens is mediated by TRAIL-expressing CD8+ T cells. J Immunol 186, 791-798.
Gritz, D.C., and Wong, I.G. (2004). Incidence and prevalence of uveitis in Northern California; the Northern California Epidemiology of Uveitis Study. Ophthalmology 111, 491-500; discussion 500.
Hagenow, K., Gelderman, K.A., Hultqvist, M., Merky, P., Backlund, J., Frey, O., Kamradt, T., and Holmdahl, R. (2009). Ncf1-associated reduced oxidative burst promotes IL-33R+ T cell-mediated adjuvant-free arthritis in mice. J Immunol 183, 874-881.
Hara, Y., Caspi, R.R., Wiggert, B., Chan, C.C., Wilbanks, G.A., and Streilein, J.W. (1992a). Suppression of experimental autoimmune uveitis in mice by induction of anterior chamber-associated immune deviation with interphotoreceptor retinoid-binding protein. J Immunol 148, 1685-1692.
Hara, Y., Caspi, R.R., Wiggert, B., Dorf, M., and Streilein, J.W. (1992b). Analysis of an in vitro-generated signal that induces systemic immune deviation similar to that elicited by antigen injected into the anterior chamber of the eye. J Immunol 149, 1531-1538.
Horai, R., and Caspi, R.R. (2011). Cytokines in autoimmune uveitis. J Interferon Cytokine Res 31, 733-744.
Hori, J., Wang, M., Miyashita, M., Tanemoto, K., Takahashi, H., Takemori, T., Okumura, K., Yagita, H., and Azuma, M. (2006). B7-H1-induced apoptosis as a mechanism of immune privilege of corneal allografts. J Immunol 177, 5928-5935.
Hultqvist, M., Backlund, J., Bauer, K., Gelderman, K.A., and Holmdahl, R. (2007). Lack of reactive oxygen species breaks T cell tolerance to collagen type II and allows development of arthritis in mice. J Immunol 179, 1431-1437.
Hultqvist, M., and Holmdahl, R. (2005). Ncf1 (p47phox) polymorphism determines oxidative burst and the severity of arthritis in rats and mice. Cell Immunol 233, 97-101.
Hultqvist, M., Olofsson, P., Holmberg, J., Backstrom, B.T., Tordsson, J., and Holmdahl, R. (2004). Enhanced autoimmunity, arthritis, and encephalomyelitis in mice with a reduced oxidative burst due to a mutation in the Ncf1 gene. Proc Natl Acad Sci U S A 101, 12646-12651.
Iwata, D., Kitaichi, N., Miyazaki, A., Iwabuchi, K., Yoshida, K., Namba, K., Ozaki, M., Ohno, S., Umezawa, K., Yamashita, K., et al. (2010). Amelioration of experimental autoimmune uveoretinitis with nuclear factor-{kappa}B Inhibitor dehydroxy methyl epoxyquinomicin in mice. Invest Ophthalmol Vis Sci 51, 2077-2084.
Jiang, H.R., Lumsden, L., and Forrester, J.V. (1999). Macrophages and dendritic cells in IRBP-induced experimental autoimmune uveoretinitis in B10RIII mice. Invest Ophthalmol Vis Sci 40, 3177-3185.
Jiang, H.R., Muckersie, E., Robertson, M., and Forrester, J.V. (2003). Antigen-specific inhibition of experimental autoimmune uveoretinitis by bone marrow-derived immature dendritic cells. Invest Ophthalmol Vis Sci 44, 1598-1607.
Jiang, L., He, H., Yang, P., Lin, X., Zhou, H., Huang, X., and Kijlstra, A. (2009). Splenic CD8+ T cells secrete TGF-beta1 to exert suppression in mice with anterior chamber-associated immune deviation. Graefes Arch Clin Exp Ophthalmol 247, 87-92.
Kaplan, H.J., and Streilein, J.W. (1977). Immune response to immunization via the anterior chamber of the eye. I. F. lymphocyte-induced immune deviation. J Immunol 118, 809-814.
Kaplan, H.J., and Streilein, J.W. (1978). Immune response to immunization via the anterior chamber of the eye. II. An analysis of F1 lymphocyte-induced immune deviation. J Immunol 120, 689-693.
Katagiri, K., Zhang-Hoover, J., Mo, J.S., Stein-Streilein, J., and Streilein, J.W. (2002). Using tolerance induced via the anterior chamber of the eye to inhibit Th2-dependent pulmonary pathology. J Immunol 169, 84-89.
Kawasaki, H., Martin, C.A., Uchida, T., Usui, M., Noma, T., Minami, M., and Dorf, M.E. (1986). Functional analysis of cloned macrophage hybridomas. V. Induction of suppressor T cell responses. J Immunol 137, 2145-2151.
Keino, H., Masli, S., Sasaki, S., Streilein, J.W., and Stein-Streilein, J. (2006a). CD8+ T regulatory cells use a novel genetic program that includes CD103 to suppress Th1 immunity in eye-derived tolerance. Invest Ophthalmol Vis Sci 47, 1533-1542.
Keino, H., Takeuchi, M., Kezuka, T., Hattori, T., Usui, M., Taguchi, O., Streilein, J.W., and Stein-Streilein, J. (2006b). Induction of eye-derived tolerance does not depend on naturally occurring CD4+CD25+ T regulatory cells. Invest Ophthalmol Vis Sci 47, 1047-1055.
Kennedy, M.C., Rosenbaum, J.T., Brown, J., Planck, S.R., Huang, X., Armstrong, C.A., and Ansel, J.C. (1995). Novel production of interleukin-1 receptor antagonist peptides in normal human cornea. J Clin Invest 95, 82-88.
Kezuka, T., and Streilein, J.W. (2000a). Analysis of in vivo regulatory properties of T cells activated in vitro by TGFbeta2-treated antigen presenting cells. Invest Ophthalmol Vis Sci 41, 1410-1421.
Kezuka, T., and Streilein, J.W. (2000b). In vitro generation of regulatory CD8+ T cells similar to those found in mice with anterior chamber-associated immune deviation. Invest Ophthalmol Vis Sci 41, 1803-1811.
Kitaichi, N., Namba, K., and Taylor, A.W. (2005). Inducible immune regulation following autoimmune disease in the immune-privileged eye. J Leukoc Biol 77, 496-502.
Kitamei, H., Iwabuchi, K., Namba, K., Yoshida, K., Yanagawa, Y., Kitaichi, N., Kitamura, M., Ohno, S., and Onoe, K. (2006). Amelioration of experimental autoimmune uveoretinitis (EAU) with an inhibitor of nuclear factor-kappaB (NF-kappaB), pyrrolidine dithiocarbamate. J Leukoc Biol 79, 1193-1201.
Kloetzel, P.M., and Ossendorp, F. (2004). Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Curr Opin Immunol 16, 76-81.
Knisely, T.L., Hosoi, J., Nazareno, R., and Granstein, R.D. (1994). The presence of biologically significant concentrations of glucocorticoids but little or no cortisol binding globulin within aqueous humor: relevance to immune privilege in the anterior chamber of the eye. Invest Ophthalmol Vis Sci 35, 3711-3723.
Knox, E.G., Mayho, A., Cant, W., and Truelove, P. (1980). Iridocyclitis: incidence, distribution and health service usage. Community Med 2, 97-101.
Kosiewicz, M.M., and Alard, P. (2004). Tolerogenic antigen-presenting cells: regulation of the immune response by TGF-beta-treated antigen-presenting cells. Immunol Res 30, 155-170.
Kosiewicz, M.M., Okamoto, S., Miki, S., Ksander, B.R., Shimizu, T., and Streilein, J.W. (1994). Imposing deviant immunity on the presensitized state. J Immunol 153, 2962-2973.
Kuchroo, V.K., Minami, M., Diamond, B., and Dorf, M.E. (1988). Functional analysis of cloned macrophage hybridomas. VI. Differential ability to induce immunity or suppression. J Immunol 141, 10-16.
Lange, C., Durr, M., Doster, H., Melms, A., and Bischof, F. (2007). Dendritic cell-regulatory T-cell interactions control self-directed immunity. Immunol Cell Biol 85, 575-581.
Lee, D.J., and Taylor, A.W. (2013). Both MC5r and A2Ar are required for protective regulatory immunity in the spleen of post-experimental autoimmune uveitis in mice. J Immunol 191, 4103-4111.
Levy-Clarke, G., Jabs, D.A., Read, R.W., Rosenbaum, J.T., Vitale, A., and Van Gelder, R.N. (2014). Expert panel recommendations for the use of anti-tumor necrosis factor biologic agents in patients with ocular inflammatory disorders. Ophthalmology 121, 785-796 e783.
Lin, H.H., Faunce, D.E., Stacey, M., Terajewicz, A., Nakamura, T., Zhang-Hoover, J., Kerley, M., Mucenski, M.L., Gordon, S., and Stein-Streilein, J. (2005). The macrophage F4/80 receptor is required for the induction of antigen-specific efferent regulatory T cells in peripheral tolerance. J Exp Med 201, 1615-1625.
Lindstedt, E.W., Baarsma, G.S., Kuijpers, R.W., and van Hagen, P.M. (2005). Anti-TNF-alpha therapy for sight threatening uveitis. Br J Ophthalmol 89, 533-536.
Luo, H., Wu, Y., Qi, S., Wan, X., Chen, H., and Wu, J. (2001). A proteasome inhibitor effectively prevents mouse heart allograft rejection. Transplantation 72, 196-202.
Mahnke, K., Bedke, T., and Enk, A.H. (2007). Regulatory conversation between antigen presenting cells and regulatory T cells enhance immune suppression. Cell Immunol 250, 1-13.
Masli, S., Turpie, B., Hecker, K.H., and Streilein, J.W. (2002). Expression of thrombospondin in TGFbeta-treated APCs and its relevance to their immune deviation-promoting properties. J Immunol 168, 2264-2273.
Mattapallil, M.J., Wawrousek, E.F., Chan, C.C., Zhao, H., Roychoudhury, J., Ferguson, T.A., and Caspi, R.R. (2012). The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes. Invest Ophthalmol Vis Sci 53, 2921-2927.
Mattingly, L.H., Gault, R.A., and Murphy, W.J. (2007). Use of systemic proteasome inhibition as an immune-modulating agent in disease. Endocr Metab Immune Disord Drug Targets 7, 29-34.
Medawar, P.B. (1948). Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol 29, 58-69.
Mekada, K., Abe, K., Murakami, A., Nakamura, S., Nakata, H., Moriwaki, K., Obata, Y., and Yoshiki, A. (2009). Genetic differences among C57BL/6 substrains. Exp Anim 58, 141-149.
Mizuno, K., Clark, A.F., and Streilein, J.W. (1989). Anterior chamber-associated immune deviation induced by soluble antigens. Invest Ophthalmol Vis Sci 30, 1112-1119.
Moran, E., Carbone, F., Augusti, V., Patrone, F., Ballestrero, A., and Nencioni, A. (2012). Proteasome inhibitors as immunosuppressants: biological rationale and clinical experience. Semin Hematol 49, 270-276.
Namba, K., Kitaichi, N., Nishida, T., and Taylor, A.W. (2002). Induction of regulatory T cells by the immunomodulating cytokines alpha-melanocyte-stimulating hormone and transforming growth factor-beta2. J Leukoc Biol 72, 946-952.
Namba, K., Ogasawara, K., Kitaichi, N., Matsuki, N., Takahashi, A., Sasamoto, Y., Kotake, S., Matsuda, H., Iwabuchi, K., Ohno, S., et al. (1998). Identification of a peptide inducing experimental autoimmune uveoretinitis (EAU) in H-2Ak-carrying mice. Clin Exp Immunol 111, 442-449.
Neubert, K., Meister, S., Moser, K., Weisel, F., Maseda, D., Amann, K., Wiethe, C., Winkler, T.H., Kalden, J.R., Manz, R.A., et al. (2008). The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med 14, 748-755.
Nguyen, A.M., and Rao, N.A. (2011). Oxidative photoreceptor cell damage in autoimmune uveitis. J Ophthalmic Inflamm Infect 1, 7-13.
Niederkorn, J.Y. (2007). The induction of anterior chamber-associated immune deviation. Chem Immunol Allergy 92, 27-35.
Onishi, Y., Fehervari, Z., Yamaguchi, T., and Sakaguchi, S. (2008). Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci U S A 105, 10113-10118.
Pillai, M.R., Collison, L.W., Wang, X., Finkelstein, D., Rehg, J.E., Boyd, K., Szymczak-Workman, A.L., Doggett, T., Griffith, T.S., Ferguson, T.A., et al. (2011). The plasticity of regulatory T cell function. J Immunol 187, 4987-4997.
Qian, Y., and Acharya, N.R. (2010). Juvenile idiopathic arthritis-associated uveitis. Curr Opin Ophthalmol 21, 468-472.
Quah, B.J., and O'Neill, H.C. (2005). Maturation of function in dendritic cells for tolerance and immunity. J Cell Mol Med 9, 643-654.
Rajendram, R., Saraswathy, S., and Rao, N.A. (2007). Photoreceptor mitochondrial oxidative stress in early experimental autoimmune uveoretinitis. Br J Ophthalmol 91, 531-537.
Rao, N.A., Saraswathy, S., Pararajasegaram, G., and Bhat, S.P. (2012). Small heat shock protein alphaA-crystallin prevents photoreceptor degeneration in experimental autoimmune uveitis. PLoS One 7, e33582.
Sadaka, B., Alloway, R.R., Shields, A.R., Schmidt, N.M., and Woodle, E.S. (2012). Proteasome inhibition for antibody-mediated allograft rejection. Semin Hematol 49, 263-269.
San Miguel, J., Blade, J., Boccadoro, M., Cavenagh, J., Glasmacher, A., Jagannath, S., Lonial, S., Orlowski, R.Z., Sonneveld, P., and Ludwig, H. (2006). A practical update on the use of bortezomib in the management of multiple myeloma. Oncologist 11, 51-61.
Sanchez-Cano, D., Callejas-Rubio, J.L., Ruiz-Villaverde, R., Rios-Fernandez, R., and Ortego-Centeno, N. (2013). Off-label uses of anti-TNF therapy in three frequent disorders: Behcet's disease, sarcoidosis, and noninfectious uveitis. Mediators Inflamm 2013, 286857.
Sano, Y., Okamoto, S., and Streilein, J.W. (1997). Induction of donor-specific ACAID can prolong orthotopic corneal allograft survival in "high-risk" eyes. Curr Eye Res 16, 1171-1174.
Schmidt, N., Gonzalez, E., Visekruna, A., Kuhl, A.A., Loddenkemper, C., Mollenkopf, H., Kaufmann, S.H., Steinhoff, U., and Joeris, T. (2010). Targeting the proteasome: partial inhibition of the proteasome by bortezomib or deletion of the immunosubunit LMP7 attenuates experimental colitis. Gut 59, 896-906.
Shao, H., Liao, T., Ke, Y., Shi, H., Kaplan, H.J., and Sun, D. (2006). Severe chronic experimental autoimmune uveitis (EAU) of the C57BL/6 mouse induced by adoptive transfer of IRBP1-20-specific T cells. Exp Eye Res 82, 323-331.
Skaug, B., Jiang, X., and Chen, Z.J. (2009). The role of ubiquitin in NF-kappaB regulatory pathways. Annu Rev Biochem 78, 769-796.
Sonoda, K.H., and Stein-Streilein, J. (2002a). CD1d on antigen-transporting APC and splenic marginal zone B cells promotes NKT cell-dependent tolerance. Eur J Immunol 32, 848-857.
Sonoda, K.H., and Stein-Streilein, J. (2002b). Ocular immune privilege and CD1d-reactive natural killer T cells. Cornea 21, S33-38.
Stanislaus, R., Gilg, A.G., Singh, A.K., and Singh, I. (2005). N-acetyl-L-cysteine ameliorates the inflammatory disease process in experimental autoimmune encephalomyelitis in Lewis rats. J Autoimmune Dis 2, 4.
Stein-Streilein, J. (2008). Immune regulation and the eye. Trends Immunol 29, 548-554.
Stein-Streilein, J., and Streilein, J.W. (2002). Anterior chamber associated immune deviation (ACAID): regulation, biological relevance, and implications for therapy. Int Rev Immunol 21, 123-152.
Streilein, J.W. (2003). Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol 3, 879-889.
Streilein, J.W., and Stein-Streilein, J. (2000). Does innate immune privilege exist? J Leukoc Biol 67, 479-487.
Sun, K., Welniak, L.A., Panoskaltsis-Mortari, A., O'Shaughnessy, M.J., Liu, H., Barao, I., Riordan, W., Sitcheran, R., Wysocki, C., Serody, J.S., et al. (2004). Inhibition of acute graft-versus-host disease with retention of graft-versus-tumor effects by the proteasome inhibitor bortezomib. Proc Natl Acad Sci U S A 101, 8120-8125.
Takeuchi, M., Alard, P., and Streilein, J.W. (1998). TGF-beta promotes immune deviation by altering accessory signals of antigen-presenting cells. J Immunol 160, 1589-1597.
Takeuchi, M., Alard, P., Verbik, D., Ksander, B., and Streilein, J.W. (1999). Anterior chamber-associated immune deviation-inducing cells activate T cells, and rescue them from antigen-induced apoptosis. Immunology 98, 576-583.
Takeya, R., and Sumimoto, H. (2003). Molecular mechanism for activation of superoxide-producing NADPH oxidases. Mol Cells 16, 271-277.
Taylor, A.W., Streilein, J.W., and Cousins, S.W. (1992). Identification of alpha-melanocyte stimulating hormone as a potential immunosuppressive factor in aqueous humor. Curr Eye Res 11, 1199-1206.
Taylor, A.W., Streilein, J.W., and Cousins, S.W. (1994). Immunoreactive vasoactive intestinal peptide contributes to the immunosuppressive activity of normal aqueous humor. J Immunol 153, 1080-1086.
Taylor, A.W., and Yee, D.G. (2003). Somatostatin is an immunosuppressive factor in aqueous humor. Invest Ophthalmol Vis Sci 44, 2644-2649.
Taylor, A.W., Yee, D.G., and Streilein, J.W. (1998). Suppression of nitric oxide generated by inflammatory macrophages by calcitonin gene-related peptide in aqueous humor. Invest Ophthalmol Vis Sci 39, 1372-1378.
Tobinick, E. (2010). Perispinal etanercept: a new therapeutic paradigm in neurology. Expert Rev Neurother 10, 985-1002.
Utecht, K.N., and Kolesar, J. (2008). Bortezomib: a novel chemotherapeutic agent for hematologic malignancies. Am J Health Syst Pharm 65, 1221-1231.
Vanderlugt, C.L., Rahbe, S.M., Elliott, P.J., Dal Canto, M.C., and Miller, S.D. (2000). Treatment of established relapsing experimental autoimmune encephalomyelitis with the proteasome inhibitor PS-519. J Autoimmun 14, 205-211.
Vignali, D. (2008). How many mechanisms do regulatory T cells need? Eur J Immunol 38, 908-911.
Vignali, D.A., Collison, L.W., and Workman, C.J. (2008). How regulatory T cells work. Nat Rev Immunol 8, 523-532.
Wakefield, D., and Chang, J.H. (2005). Epidemiology of uveitis. Int Ophthalmol Clin 45, 1-13.
Watte, C.M., Nakamura, T., Lau, C.H., Ortaldo, J.R., and Stein-Streilein, J. (2008). Ly49 C/I-dependent NKT cell-derived IL-10 is required for corneal graft survival and peripheral tolerance. J Leukoc Biol 83, 928-935.
Wilbanks, G.A., Mammolenti, M., and Streilein, J.W. (1991). Studies on the induction of anterior chamber-associated immune deviation (ACAID). II. Eye-derived cells participate in generating blood-borne signals that induce ACAID. J Immunol 146, 3018-3024.
Wilbanks, G.A., Mammolenti, M., and Streilein, J.W. (1992). Studies on the induction of anterior chamber-associated immune deviation (ACAID). III. Induction of ACAID depends upon intraocular transforming growth factor-beta. Eur J Immunol 22, 165-173.
Wilbanks, G.A., and Streilein, J.W. (1990). Characterization of suppressor cells in anterior chamber-associated immune deviation (ACAID) induced by soluble antigen. Evidence of two functionally and phenotypically distinct T-suppressor cell populations. Immunology 71, 383-389.
Wilbanks, G.A., and Streilein, J.W. (1992). Macrophages capable of inducing anterior chamber associated immune deviation demonstrate spleen-seeking migratory properties. Reg Immunol 4, 130-137.
Williamson, J.S., Bradley, D., and Streilein, J.W. (1989). Immunoregulatory properties of bone marrow-derived cells in the iris and ciliary body. Immunology 67, 96-102.
Wu, J. (2002). On the role of proteasomes in cell biology and proteasome inhibition as a novel frontier in the development of immunosuppressants. Am J Transplant 2, 904-912.
Xu, H., Koch, P., Chen, M., Lau, A., Reid, D.M., and Forrester, J.V. (2008). A clinical grading system for retinal inflammation in the chronic model of experimental autoimmune uveoretinitis using digital fundus images. Exp Eye Res 87, 319-326.
Yamazaki, S., Inaba, K., Tarbell, K.V., and Steinman, R.M. (2006). Dendritic cells expand antigen-specific Foxp3+ CD25+ CD4+ regulatory T cells including suppressors of alloreactivity. Immunol Rev 212, 314-329.
Yamazaki, S., and Steinman, R.M. (2009). Dendritic cells as controllers of antigen-specific Foxp3+ regulatory T cells. J Dermatol Sci 54, 69-75.
Yanaba, K., Yoshizaki, A., Muroi, E., Hara, T., Ogawa, F., Shimizu, K., and Sato, S. (2010). The proteasome inhibitor bortezomib inhibits T cell-dependent inflammatory responses. J Leukoc Biol 88, 117-122.
Yang, Y., Kitagaki, J., Wang, H., Hou, D.X., and Perantoni, A.O. (2009). Targeting the ubiquitin-proteasome system for cancer therapy. Cancer Sci 100, 24-28.
Yannaki, E., Papadopoulou, A., Athanasiou, E., Kaloyannidis, P., Paraskeva, A., Bougiouklis, D., Palladas, P., Yiangou, M., and Anagnostopoulos, A. (2010). The proteasome inhibitor bortezomib drastically affects inflammation and bone disease in adjuvant-induced arthritis in rats. Arthritis Rheum 62, 3277-3288.
Yu, X., Harden, K., Gonzalez, L.C., Francesco, M., Chiang, E., Irving, B., Tom, I., Ivelja, S., Refino, C.J., Clark, H., et al. (2009). The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol 10, 48-57.
Zhang-Hoover, J., Finn, P., and Stein-Streilein, J. (2005). Modulation of ovalbumin-induced airway inflammation and hyperreactivity by tolerogenic APC. J Immunol 175, 7117-7124.
Zhang-Hoover, J., and Stein-Streilein, J. (2004). Tolerogenic APC generate CD8+ T regulatory cells that modulate pulmonary interstitial fibrosis. J Immunol 172, 178-185.
Zhang-Hoover, J., and Stein-Streilein, J. (2007). Therapies based on principles of ocular immune privilege. Chem Immunol Allergy 92, 317-327.
Zollner, T.M., Podda, M., Pien, C., Elliott, P.J., Kaufmann, R., and Boehncke, W.H. (2002). Proteasome inhibition reduces superantigen-mediated T cell activation and the severity of psoriasis in a SCID-hu model. J Clin Invest 109, 671-679.