簡易檢索 / 詳目顯示

研究生: 馮啟祐
Feng, Chi-Iou
論文名稱: 以光調制光譜及光激發螢光光譜研究砷銻化鎵及氮化銦/氮化鎵多層量子井的光電特性
The Electro-optic Properties of GaAs1-xSbx and InN/GaN Multiple Quantum Wells Studied by Photoreflectance and Photoluminescence
指導教授: 黃正雄
Hwang, Jenn-Shyong
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 75
中文關鍵詞: 砷銻化鎵氮化銦/氮化鎵
外文關鍵詞: GaAsSb, InN/GaN
相關次數: 點閱:50下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用室溫下的光調制光譜研究砷銻化鎵的表面本徵-N+摻雜(Surfaceintrinsic-N+,SIN+)結構的表面費米能階及表面態密度。根據熱離子輻射理論及電流傳輸理論,半導體表面費米能階VF及其表面態密度可由其表面勢壘與激發光強度的關係求得。本論文首先量取不同激發光強度下的光調制光譜並求出各不同激發光下的表面勢壘,再與理論所推導的公式擬合,求得不同組成比砷銻化鎵的表面費米能階及幾何因子,得到費米能階隨組成比呈線性關係。最後利用擬合所得的幾何因子,得表面態密度,發現其高表面態密度是造成砷銻化鎵的費米能階強釘札的原因。

    其次為利用螢光光譜研究氮化銦/氮化鎵多層量子井結構,在不同氮化銦量子井厚度及不同溫度(15K~315K)下,發射頻率與發射效率的變化。從螢光光譜可以得知隨著氮化銦厚度增加而發射頻率呈紅位移;此外,從譜線分析亦可得到,內部量子效率是隨著氮化銦厚度增加而增高。但4 nm厚的氮化銦量子井,其效率突然往下掉,從其X-Ray Diffraction(XRD)探討其原因,證實是因為氮化鎵與氮化銦介面不平整缺陷所造成。

    Room-temperature photoreflectance (PR) is employed to investigate the Fermi level pinning and surface state density of the GaAs1-xSbx surface intrinsic-n+(SIN+) structures with different Sb concentration. Based on the thermionic emission theory and current-transport theory, the surface Fermi level VF and the surface state density are determined experimentally from the dependence of the surface barrier height on the pump beam intensity. The evolution of the GaAs1-xSbx surface Fermi level as a function of Sb composition can be fitted linearly. Finally using the relation between the surface state density and the Geometry factory, the surface state densities are determined. The high surface state densities make the surface Fermi level of the GaAs1-xSbx to be strongly pinned.

    In the second part, the photoluminescence (PL) under various temperatures is employed to investigate the emission energy and the emission efficiency of the InN/GaN multiple-quantum-well (MQW) with various well thicknesses. The emission energy shifts to longer wavelengths with increasing InN well thickness. The internal quantum efficiency (IQE) obtained increases with the InN quantum well thickness. However, as the well is thicker than 3nm, the IQE decreases dramatically. From the results of x-ray diffraction spectra, the higher defect density due to the high interface roughness causes the IQE to reduce sharply.

    第一章 緒論……………...…..……..……...…………………10 第二章 光調制光譜學………………………………………..16 2-1 調制低電場…………………………………………19 2-2 Franz-keldysh振盪…………………………………23 2-3 光調制光譜的機制…………………………………24 2-4 譜線擬合…………………………………………….25 2-5 實驗裝置…………………………………………... 27 第三章 光激發螢光光譜………………………………….…31 第四章 砷銻化鎵材料特性與研究………………………...33 4-1 砷銻化鎵材料特性……………………………………..33 4-2 砷銻化鎵樣品結構…………………………………34 4-3 實驗與討論…………………………………………35 4-4 結論……………………………………………….…39 第五章 氮化銦/氮化鎵多層量子井材料特性與研究……47 5-1 氮化銦/氮化鎵多層量子井材料特性……………47 5-2 樣品結構…………………………………………….50 5-3 實驗與討論…………………………………………51 第六章 結論…………………………………………………..63 參考文獻………………………………………………………….65

    1. See, for example, K. Onabe, Y. Tashiro, and Y. Ide, Sur. Sci. 174, 401 (1986)
    2. S. Yamada, T. Fukui, and A. Sugimura, Sur. Sci. 174, 444 (1986)
    3. R. Dingle, W. Wiegman, and C. H. Henry, Phys. Rev. Lett. 33, 827 (1974)
    4. C. Weisbuch, R. C. Miller, R.Dingle, A.C. Gossard, and W. Wiegmann, Solid State Commu. 37, 219 (1981)
    5. A. C. Wright and J. O. Williams, Mat. Letts. 3, 80 (1985);R. D. Dupuis, R. C. Miller and P. M. Petroff, Mat. Letts. 3, 398 (1985)
    6. H. Shen, P. Parayanthal, Y. F. Liu, and F. H. Pollak, Rev. Sci. Intrum. 58, 1429 (1987)
    7. F. Bassni and G. P. Parravicini, Electric State and Opitical Transition in Solid (America Press, 1975) and D. E. Aspnes, in Handbook on Semiconductors, ed. By T. S. Moss (North-Holland, New York, 1980) Vol. 2, p. 109.
    8. M. Cardona, in Modulation Spectroscopy, (Academic, New York, 1969) and Reference therein.
    9. H. Shen, S. H. Pan, F. H. Pollak, M. Dutta and T. R. AuCoin, Phys. Rev. B36, 9384 (1987).
    10. L. Esaki, in Proceedings of the 17th International Conference on the Physics of Semiconductors, Berkely, 1984, ed. by J. O. Chodi and W. A. Harrison (Spinger Verlay, N. Y. 1985) p.473.
    11. L. Esaki in Recent Topics in Semiconductor Physics, ed. by Kamimurus and Toyozawa, World Scientific, Singpor, 1983, p.1.
    12. P. C. Klipstein and N. Apsley, J. Phys. C: Solid State Phys. 19, 6461 (1986).
    13. W. Zhou, H. Shen, J. Pamulapati, P. Cooke and M. Dutta, Appl. Phys. Lett. 66, 607 (1995).
    14. D. S. Chemla, B. Joseph, J. M. Kuto, T. Y. Chang, C. Klingshirn, G. Livescu and David A. B. Miller, IEEE J. Quantum Electron. vol. 24, 1664 (1988).
    15. S. Monéger, Y. Baltagi, T. Benyattou, A. Tabata, B. Ragot, G. Guillot, A. Georgakilas, K. Zekentes and G. Halkias, J. Appl. Phys. 74, 1437 (1993).
    16. Stephen Giugni, T. L. Tansley, F. Green, C. Shwe and M. Gal, J. Appl. Phys. 71, 3486 (1992).
    17. L. Aigouy, F. H. Pollak and G. Gumbs, Appl. Phys. Lett. 70, 2562 (1997).
    18. C. F. Li, D. Y. Lin, Y. S. Huang, Y. F. Chen and K. K. Tiong, J. Appl. Phys. 81, 400 (1997).
    19. V. L. Alperovich, A. S. Jaroshevich, D. I. Lubyshev, V. P. Migal, V. V. Preobrazhenskii and B. R. Semjagin, Superlattices and Microstructures vol. 10, 131 (1991).
    20. J. Humlicek, F. Lukes and K. Dloog, Superlattices and Microstructures vol. 9, 133 (1991).
    21. M. Nakayama, T. Doguchi and H. Nishimura, J. Appl. Phys. 72, 2372 (1992).
    22. P. A. M. Rodrigues, F. Cerdeira and J. C. Bean, Phys. Rev. B 46, 15263 (1992).
    23. M. Nakayama, T. Fujita and H. Nishimura, Superlattices and Microstructures vol. 17, 31 (1995).
    24. M. Vergohl, K. Dettmer and F. R. Kessler, J. Appl. Phys. 81, 1434 (1997).
    25. M. Nakayama, T. Nakanishi, K. Okajima, M. Ando and H. Nishimura, Solid State Commun. 102, 803 (1997).
    26. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).
    27. D. I. Lubyshev, P. P. Gonzalez-Borrero, Jr., E. Petitprez, N. La Scala, Jr., and P. Basmaji, Appl. Phys. Lett. 68, 205 (1996).
    28. N. N. Ledentsov, V. A. Shchukin, M. Grundmann, N. Kirstaedter, J. Bohrer, O. Schmidt, D. Dimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kop”ev, S. V. Zaitsev, N. Yu. Gordeev, Zh. I. Alferov, A. I. Borovkov, A. O. Kosogov, S. S. Ruvimov, P. Werner, U. Gosele, and J. Heydenreich, Phys. Rev. B 54, 8743 (1996).
    29. D. I. Lubyshev, P. P. Gonzalez-Borrero, Jr., E. Petitprez, and P. Basmaji, J. Vac Sci Technol. B 14, 2212 (1996).
    30. N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Zh. I. Alferov, Appl. Phys. Lett. 69, 1226 (1996).
    31. R. Bhattacharya, C. Y. Lee, F. H. Pollak and D. M. Schleich, J. Non-Crystalline Solids, 91, 235 (1987).
    32. O. J. Glembocki B. V. Shanabrook, N. Bottka, W. T. Beard and J. Comas, Appl. Phys. Lett., 46, 970 (1985).
    33. O. J. Glembocki, B. V. Shanabrook, N. Bottka, W. T. Beard and J. Comas, Proc. Photo-Optical Instrum. Eng., 524, 86 (1985).
    34. R. N. Bhattacharya, H. Shen, P. Parayanthal, F. H. Pollak, T. Coutts and Aharoni, Phys. Rev., B 37, 4044 (1988); also Pro. Soc. Photo-Optical Instrum. Engineers, (SPIE, Bellingham, 1987), 794, 81 (1987); Solar Cells, 21, 371 (1987)
    35. R. Glosser and N. Bottka, Proc. Soc. of Photo-Optical Instrum. Engineers, (SPIE, Bellingham, 1987), 794, 88 (1987).
    36. H. Shen, F. H. Pollak and J. W. Woodall, J. Vac. Sci. Tech., B 8, 413 (1990).
    37. P. S. Dutta, K. S. Sangunni, H. L. Bhat and Vikram Kumar, Appl. Phys. Lett. 66, 1986 (1995).
    38. H. Nakanishi and K. Wada, Jpn. J. Appl. Phys. 32, 6206 (1993).
    39. M. Sakai and M. Shinohara, J. Appl. Soc. Japn. Vol. 66, 738 (1997).
    40. M. Sydor, and A. Badakhshan and J. R. Engholm, Appl. Phys. Lett. 59, 677 (1991).
    41. H. K. Lipsanen and V. M. Airaksinen, Appl. Phys. Lett. 63, 2863 (1993).
    42. R. N. Bhattacharya, H. Shen, P. Paraynthal, F. H. Pollak, T. Coutts, and H. Aharoni, Phys. Rev. B37, 4044 (1988).
    43. R. L. Ober, J. Pamulaoati, P. K. Bhattacharya and J. E. Oh, J. Electron Mat. 18, 379 (1989).
    44. G. S. Chang, W. C. Hwang, Y. C. Wang, Z. P. Yang, and J. S. Hwang, Accepted to J. Appl. Phys.1999
    45. J. S. Hwang, S. L. Tyan, W. Y. Chou, M. L. Lee, H. H. Lin, T. L. Lee, W. David, and Z. Hang, Appl. Phys. Lett., 64, 3314 (1994).
    46. T. T. Chiang and W. E. Spicer, J. Vac. Sci. Technol., A 7, 724 (1989).
    47. J. Tersoff, Phys. Rev. Lett., 52, 465 (1984).
    48. J. S. Hwang, W. Y. Chou, S. L. Tyan, H. H. Lin and T. L. Lee, Appl. Phys. Lett., 67, 2350 (1995).
    49. J. S. Hwang, W. Y. Chou. M. C. Hung, J. S. Wang and H. H. Lin, J. Appl. Phys. 82, 3888 (1997).
    50. F. H. Pollak and H. Shen, in Proceeding of the Society of Photooptical Instrumentation Engineers (SPIE, Bellingham, 1898), Vol. 1037, P 16.
    51. E. E. Mendez, L. L. Chang, G. Landgren, R. Ludeke, L. Esaki and F. H. Pollak, Phys. Rev. Lett., 46, 1230 (1981).
    52. M. Erman, J. B. Theetan, P. Frijlink, S. Gaillard, F. J. Hia and C. Alibert, J. Appl. Phys., 56, 3214 (1984).
    53. C. Alibert, S. Gaillard, J. A. Brum, G. Bastard, P. Frijlink and M. Erman, Solid state Commum. 53, 457 (1985).
    54. K. Capuder, P. E. Norris, H. Shen, Z. Hang and F. H. Pollak, J. Electron. Mater. 19, 295 (1990).
    55. H. Shen, Z. Hang, S. H. Pan, F. H. Pollak, and J. M. Woodall, Appl. Phys. Letts., 52, 2058 (1988).
    56. D. E. Aspnes, in M. Balkanski (ed.), Handbook on Semiconductors, Vol. 2, North-Holland, New York, 1980, p. 109; also Surf. Sci., 37, 418 (1973).
    57. D. E. Aspnes and A. A. Studna, Phys. Rev., B7, 4605 (1973).
    58. H. R. Philipp and H. Ehrenreich, Phys. Rev., 129, 1550 (1963).
    59. D. D. Sell and S. E. Stokowski, 1970, Proc. 10th Int. Conf. on the Physics of Semiconductors, Cambridge, Mass., eds. Keller et al. (USACE Div. Techn. Inform. CONF-70081, Springfield,) p. 417.
    60. O. J. Glembocki, N. Bottka and J. E. Furneaux, J. Appl. Phys. 57, 432 (1985).
    61. A. J. Shields, P. C. Klipstein, M. S. Skolnick, G. W. Smith and C. R. Whitehouse, Phys. Rev. B 42, 5879 (1990).
    62. N. Jaffrezic-Renault, H. Perrot and C. Nguyen van Huong, Electrochimica Acta 34, 1739 (1989).
    63. P. C. Klipstein and N. Apsley, J. Phys. C: Solid State Phys. 19 6461 (1986).
    64. C. Vazquez-López, H. Navarro, Raúl Aceves, M. C. Vargas and C. A. Menezes, J. Appl. Phys. 58, 2066 (1985).
    65. P. C. Klipstein, P. R. Tapster, N. Apsley, D. A. Anderson, M. S. Skolnick, T. M. Kerr and K. Woodbridge, J. Phys. C: Solid State Phys. 19, 857 (1986).
    66. J. M. Wrobel, U. K. Reddy, L. C. Bassett, J. L. Aubel and S. Sundaram, J. Appl. Phys. 60, 368 (1986).
    67. A. Dodabalapur, V. P. Kesan, D. P. Neikirk, B. G. Streetman, M. H. Herman and I. D. Ward, J. Electron. Mater. 19, 265 (1990).
    68. T. Nishino, J. Cryst. Growth 98, 44 (1989).
    69. Y. S. Huang, S. S. Lin, J. S. Sheu, W. M. Shen and F. H. Pollak, Solid State Commun. 76, 1093 (1990).
    70. I. J. Fritz, T. M. Brennan and D. S. Ginley, Solid State Commun. 75, 289 (1990).
    71. S. Y. Chung, D. Y. Lin, Y. S. Huang and K. K. Tiong, Semicond. Sci. Technol. 11, 1850 (1996).
    72. M. Certier, H. Erguig, M. Soltani and T. Sauder, Physica Status Solidi B 168, 361 (1991).
    73. Y. C. Yin, D. Yan, F. H. Pollak, M. S. Hybertsen, J. M. Vandenberg and J. C. Bean, Phys. Rev. B 44, 5955 (1991).
    74. J. Calatayud, J. Allegre, H. Mathieu, N. Magnea and H. Mariette, Phys. Rev. B 47, 9684 (1993).
    75. T. P. Pearsall, Phys. Rev. B 48, 2795 (1993).
    76. Y. C. Yin, D. Yan, F. H. Pollak, M. S. Hybertsen, J. M. Vandenberg, and J. C. Bean, Surf. Sci. 267, 99 (1992).
    77. C. Armelles and V. R. Velasco, Phys. Rev. B 54, 16428 (1997).
    78. H. Yoshikawa and S. Adachi, Jpn. J. Appl. Phys. Part 1 35, 5946 (1996).
    79. A. S. Lee and P. M. Norris, Rev. Sci. Instrum. 68, 1307 (1997).
    80. V. Bellani, G. Guizzetti, L. Nosenzo, E. Reguzzoni, A. Bosacchi and S. Franchi, Superlattices and Microstructures 13, 147 (1993).
    81. T. Miyazaki and S. Adachi, Jpn. J. Appl. Phys. Part 1 33, 5817 (1994).
    82. S. Ozaki and S. Adachi, J. Appl. Phys. 78, 3380 (1995).
    83. O. J. Glembocki, B. V. Shanabrook, in D.G. Seiler and C. Boston (eds), Semiconductors and Semimetals, Vol. 36, Academic Press, New York, 1992 pp221-292.
    84. A. K. Berry, D. K. Gaskill, G. T. Stauf and Bottka, Appl. Phys. Lett. 58, 2824 (1991).
    85. J. Nukeaw, J. Yanagisawa, N. Matsubara, Y. Fujiwara and Y. Takeda, Appl. Phys. Lett. 70, 84 (1997).
    86. J. Misiewicz, P. Markiewicz, J. Rebisz, Z. Gumienny, M. Panek, B. Sciana and M. Tlaczala, Phys. Stat. Sol. (b) 183, K43 (1994).
    87. S. L. Tyan, Y. C. Wang and J. S. Hwang, Appl. Phys. Lett. 68, 1 (1996).
    88. Y. C. Wang, W. Y. Chou, W. C. Hwang, and J. S. Hwang, Solid State commu. 104, 717 (1997).
    89. H. Shen, F. H. Pollak, and J. M. Woodall, J. Vac. Sci. Technol., B 7, 804 (1989).
    90. H. Shen, Z. Hang, S. H. Pan, F. H. Pollak, T. F. Kuech, J. M. Woodall, and R. N. Sacks, Prodeedings of the 9th International Conference on the Physics of Semiconductors, Warsaw, 1989, ed. by W. Zawadzki (institute of Physics, Polish Academy of Science, Warsaw, 1989) p.1087.
    91. Y. Yin, H. M. Chen, F. H. Pollak, Y. Chen, P. A. Montano, J. M. Woodall, P. D. Kirncher, and D. Pettit, Proceedings of the 20th International Conference on the Physics of Semiconductors, Greece, 1990.
    92. M. Kallergi, B. Roughani, J. Aubel, S. Sundaram, T. Chu, S. Chu and R. Green, J. Vac. Sci. Technol. A 8, 1907 (1990).
    93. J. S. Hwang, Y. C. Wang, W. Y. Chou, and S. L. Tyan, J. Appl. Phys. 83, 2857 (1998).

    94. N. P. Lakshmi and F. G. Thomas, Appl. Phys. Lett. 61, 1081 (1992).
    95. D. E. Aspnes, in Handbook on semiconductors, edited by T. S. Moss (North-Holland, New york, 1980), Vol. 2, P. 109.
    96. D. E. Aspnes, Phys. Rev. B 10, 4228 (1974).
    97. T. M. Hsu, Y. C. Tien, N. H. Lu, S. P. Tsai, D. G. Liu and C. P. Lee, J. Appl. Phys. 72, 1065 (1992).
    98. N. Bottka, D. K. Gaskill, R. J. M. Griffiths, R. R. Bradley, T. B. Joyce, C. Ito and D. McIntyre, J. Cryst. Growth 93, 481 (1988).
    99. C. Bru-Chevallier, H. Chouaib, J. Arcamone, T. Benyattou, H.Lahreche, P. Bove, Thin Soild Films 450(2004)151
    100. V. Swaminathan,Material Aspects of GaAs and InP Based Structures,(Prentice-Hall,Inc.,1991)
    101. R.J. weltv et al.,IEEE 11-7,33(2000).
    102. O.Madelung (Editor), Semiconductors-Basic Data.
    103. R. E. Nahory, M. A. Pollack, J. C. DeWinter, and K. M. Williams, J. Appl. Phy.48,1607(1977)
    104. J. S. Hwang, W. Y. Chou, S. L.Tyan, H. H. Lin and T. L. Lee, Appl. Phys. Lett.,67,2350 (1995)
    105. H. Shen, M. Dutta, J. Appl. Phys.,78,2151 (1995)
    106. E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts (Oxford, New York,1988)
    107. H. Shen, Z. hang, S. H. Pan, F. H. Pollak, T. F. Kuech, J. M. Woodall, and R. N. Sacks, Prodeedings of the 9th International Conference on the Physics of Semiconductors, Warsaw, 1989, ed. by W. Zawadzki (institute of Physics, Polish Academy of Science, Warsaw, 1989)p.1087
    108. S. M. Sze, SEMICONDUCTOR DEVICES Physics and Technology (Wiley, New York, 1985)
    109. X. Yin, H. M. Chen, F. H. Pollak, Y. Chen, P. A. Montano, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, J. Vac. Sci. Technol., A10,133(1992).
    110. W. Y. Chou, G.S. Chang, W. C. Hwang and J. S. Hwang, J. Appl. Phys.,83,3690(1998).
    111. D. Yan, E. Look, X.Yin, F. H. Pollak and J. M. Woodall, Appl. Phys. Lett., 65, 186(1994).
    112. G. S. Chang, W. C. Hwang, Y. C. Wang, Z. P. Yang, and J. S. Hwang , J. Appl. Phys. 86,1765(1999)
    113. K. I. Lin, H. C. Lin, J. T. Tasi, C. S. Cheng, Y. T. Lu, J. S. Hwang, P.C. Chiu, S. H. Chen, J. I. Chyi, and T. S. Wang, Appl. Phys. Lett.,95,141914(2009)
    114. D. Yan, E. Look, X. Yin, F. H. Pollak, and J. M. Woodall, Appl. Phys. Lett.,65,186(1994)
    115. S. Nakamura, Y. Hara, and M. Seno, Appl. Phys. Lett. 58,2021(1991)
    116. S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. Vol. 64, 28(1994)
    117. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, Jpn. J. Appl. Phys. Vol. 35, 74(1996)
    118. V. W. L. Chin, T. L. Tansely, T. Osotchan, J. Appl. Phys.,75,7365(1994)
    119. V. Yu. Davydov, A.A.klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmutiller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, Phys. Stat. Sol.(b)234 787 (2002)
    120. S. P. Fu, Y. F. Chen, Keewee Tan, Solid State Communications 137,203(2006)
    121. R. Juza, and H. Hahn, Z. Anorg. Allg. Chem. ,239,282(1938)
    122. A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, J. Appl. Phys.,2779-2808,94,5(2003)
    123. 林弘偉,”氮化銦磊晶及量子點材料之研究”,清華大學物理所,碩士論文(2004)

    無法下載圖示 校內:2013-08-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE