| 研究生: |
王思尹 Wang, Sih-Yin |
|---|---|
| 論文名稱: |
高頻無線通訊微波介質陶瓷材料Mg2TiO4與Mg4Ta2O9 之研製 Fabrication of Microwave Dielectric Ceramic Materials Mg2TiO4 and Mg4Ta2O9 for High-Frequency Wireless Communications |
| 指導教授: |
李炳鈞
Li, Bing-Jing |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 微波介電特性 、微波濾波器 |
| 外文關鍵詞: | Microwave properties, Microwave filter |
| 相關次數: | 點閱:87 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用Mg2TiO4和Mg4Ta2O9系列材料,藉由雙取代方法對系列之A site和B site進行取代(也就是在製作Mg4Ta2O9及Mg2TiO4粉體時,同時摻雜NiO或CoO化學原料,Ni或Co就會取代Mg的晶格位置,同理,Nb會取代Ta、Sn就會取代Ti的晶格位置),經由XRD、SEM、EDS等分析,證實雙微量取代對Mg4Ta2O9系列並不如以(Mg1-xCox)4Ta2O9或(Mg1-xNix)4Ta2O9只做Mg之單一取代結果,但是Mg2TiO4之雙取代確實可以有效提升材料本身之品質因素。實驗結果顯示以鑲(Mg0.95Ni0.05)2(Ti0.95Sn0.05)O4、在燒結溫度為1325℃持溫4小時擁有最佳微波介電特性:ε_r~ 14.63、Qf= 392,000 GHz(at 11.42 GHz)、τ_f~ −48.26 ppm/℃。將主相材料和正τ_f材料(Ca0.8Sr0.2)TiO3(τ_f~ +991 ppm/℃)混合可調整主相之共振頻率溫度飄移,實驗結果顯示0.93(Mg0.95Ni0.05)2(Ti0.95Sn0.05)-0.07(Ca0.8Sr0.2)TiO3在燒結溫度為1300℃時持溫4小時擁有最佳微波介電特性:ε_r~ 18.14,Qf~ 162,000 GHz(at 10.19 GHz)而τ_f~ +1.68 ppm/℃。本研究証明雙取代在Mg2TiO4系列材料是可行的,可做為微波通訊用之陶瓷材料。另一方面,設計一開迴路電場耦合諧振器,使用步階阻抗來消除高頻的寄生響應,藉由控制耦合與非耦合線段可控制寄生通帶的位置,且可增加中心頻率點的設計性又具有小尺寸的優點,而非對稱的饋入可產生額外的零點,因為這一對零點位於通帶附近相反的兩側,因此他們會提供帶拒更好的衰減量;再使用開路殘斷產生零點,達到抑制混附波的效果。頻寬可由控制極點的位置來決定大小,極點的位置越接近中心頻率,可使S21曲線在中心頻率越收歛,頻寬越小。中心頻率f0設定2.4 GHz。此濾波器使用四種不同材質基板,分別為FR-4、Al2O3與0.93(Mg0.95Ni0.05)2(Ti0.95Sn0.05)O4-0.07(Ca0.8Sr0.2)TiO3、0.3(Mg0.95Ni0.05)4Ta2O9-0.7(Ca0.8Sr0.2)TiO3自製基板來進行模擬與實作,並比較在不同基板下其濾波器的反射損耗S11、穿透損耗S21、頻寬BW及電路尺寸變化。
A dual-substitution technique was used to modify the microwave properties of Mg2TiO4 and Mg4Ta2O9 materials. Zn,Ni,Mn or Co ions would replace some of the Mg ions at the A sites, and Nb ions replace Ta ions or Sn ions replace Ti ions at the B sites. By using the analyses of XRD, SEM and EDS, the experiments showed that the properties of dual substitution for Mg4Ta2O9 were not better than those of single substitution for Mg4Ta2O9, such as (Mg1-xCox)4Ta 2O9 or (Mg1-xNix)4Ta2O9. On the other hand, dual substitution for Mg2TiO4 could increase the quality factors effectively. The experimental results showed that the present best microwave properties were ε_r~ 14.63, Q×f = 392,000 GHz (at 11.42 GHz) and τ_f ~ −48.26 ppm/℃ for (Mg0.95Ni0.05)2(Ti0.95Sn0.05)O4 sintered at 1325℃ for 4h.(Ca0.8Sr0.2)TiO3 was further used to compensate the negative value of τ_f. The result showed that the microwave properties of ε_r~ 18.14, Q×f ~ 162,000 GHz and τ_f ~ +1.68 ppm/℃could be obtained for 0.93(Mg0.95Ni0.05)2(Ti0.95Sn0.05)O4−0.07(Ca0.8Sr0.2)TiO3 sintered at 1300℃for 4h. The present work demonstrated that the dual substitution technique could be used to improve the microwave properties of Mg2TiO4 materials, which are good candidates as the dielectric materials for microwave communications.
A compact microstrip square open-loop resonators for electric coupling planar microwave filters with 0º feed structure was investigated in this section. Its size can be reduced by using a high permittivity ceramic substrate. The selectivity and stop-band rejection of the designed filters can be significantly improved by utilizing a skew-symmetric (zero degree) feed structure. The responses of the compact hairpin filters using FR4 (ε_r= 4.4, Dielectric loss (tanδ)= 0.015), Al2O3 (ε_r=9.8, Dielectric loss (tanδ) = 0.0002) , 0.93(Mg0.95Ni0.05)2(Ti0.95Sn0.05)-0.07(Ca0.8Sr0.2)TiO3 (ε_r=9.8, Dielectric loss (tanδ) = 6.29×10-5) and 0.3(Mg0.95Ni0.05)4Ta2O9-0.7(Ca0.8Sr0.2)TiO3 ceramics (ε_r = 29.36, Dielectric loss (tanδ) = 3.375×10-5) ceramic substrates were designed to produce a center frequency of 2.4 GHz. The compact size, low-loss, sharp response and performance of the filter are presented in this study.
[1] C.-L. Huang and J.-Y. Chen, "Low-Loss Microwave Dielectrics Using Mg2(Ti1−xSnx)O4 (x=0.01–0.09) Solid Solution," Journal of the American Ceramic Society, vol. 92, pp. 2237-2241, 2009.
[2] T. Tjelta, A. Nordbotten, and H. Loktu, "Broadband radio access for multimedia services," Telektronikk, vol. vol. 96, pp. pp. 2-10., 2000 2000.
[3] B.-J. Li, S.-Y. Wang, C.-L. Huang, and Y.-B. Chen, "Ultra low loss microwave dielectric properties of Non-stoichiometry [(Mg0.7Zn0.3)]0.95Co0.05]1+δ(Ti1–xSnx)O3+δ ceramics," Journal of the Ceramic Society of Japan, vol. 122, pp. 762-767, 2014 2014.
[4] A. Belous, O. Ovchar, D. Durilin, M. M. Krzmanc, M. Valant, and D. Suvorov, "High-Q Microwave Dielectric Materials Based on the Spinel Mg2TiO4," Journal of the American Ceramic Society, vol. 89, pp. 3441-3445, 2006.
[5] I. M. Reaney and D. Iddles, "Microwave Dielectric Ceramics for Resonators and Filters in Mobile Phone Networks," Journal of the American Ceramic Society, vol. 89, pp. 2063-2072, 2006.
[6] C.-L. Huang and W.-R. Yang, "Low-loss microwave dielectrics using (Mg1−xZnx)4Nb2O9 (x=0.02–0.08) solid solutions," Journal of Alloys and Compounds, vol. 509, pp. 2269-2272, 2/3/ 2011.
[7] C.-L. Huang, J.-Y. Chen, and B.-J. Li, "A new dielectric material system using (1−x)(Mg0.95Co0.05)2TiO4–xCa0.8Sm0.4/3TiO3 at microwave frequencies," Materials Chemistry and Physics, vol. 120, pp. 217-220, 2010.
[8] A. Kan, H. Ogawa, and H. Ohsato, "Influence of microstructure on microwave dielectric properties of ZnTa2O6 ceramics with low dielectric loss," Journal of Alloys and Compounds, vol. 337, pp. 303-308, 5/2/ 2002.
[9] Y. Miyauchi, Y. Ohishi, S. Miyake, and H. Ohsato, "Improvement of the dielectric properties of rutile-doped Al2O3 ceramics by annealing treatment," Journal of the European Ceramic Society, vol. 26, pp. 2093-2096, 2006.
[10] H. Ogawa, A. Kan, S. Ishihara, and Y. Higashida, "Crystal structure of corundum type Mg4(Nb2–xTax)O9 microwave dielectric ceramics with low dielectric loss," Journal of the European Ceramic Society, vol. 23, pp. 2485-2488, 2003.
[11] C.-L. Huang and Y.-W. Tseng, "Microwave dielectric properties of Mg1.8Ti1.1O4 ceramics," Materials Letters, vol. 64, pp. 885-887, 2010.
[12] C.-L. Huang, J.-J. Wang, and Y.-P. Chang, "Dielectric Properties of Low Loss (1–x)(Mg0.95Zn0.05)TiO3–xSrTiO3 Ceramic System at Microwave Frequency," Journal of the American Ceramic Society, vol. 90, pp. 858-862, 2007.
[13] Y.-C. Chen, S.-M. Tsao, C.-S. Lin, S.-C. Wang, and Y.-H. Chien, "Microwave dielectric properties of 0.95MgTiO3–0.05CaTiO3 for application in dielectric resonator antenna," Journal of Alloys and Compounds, vol. 471, pp. 347-351, 3/5/ 2009.
[14] H.-J. Lee, I.-T. Kim, and Kug S. Hong, "Dielectric Properties of AB2O6 Compounds at Microwave Frequencies (A=Ca, Mg, Mn, Co, Ni, Zn, and B=Nb, Ta)," Japanese Journal of Applied Physics, vol. 36, p. L1318, 1997.
[15] C.-L. Huang and J.-Y. Chen, "Reduced Dielectric Loss of Modified ZnNb2O6 Ceramics by Substituting Nb5+ with Ta5+," Journal of the American Ceramic Society, vol. 92, pp. 1845-1848, 2009.
[16] H. Kagata and J. Kato, "Dielectric Properties of Ca-Based Complex Perovskite at Microwave Frequencies," Japanese Journal of Applied Physics, vol. 33, p. 5463, 1994.
[17] S.-Y. Cho, C.-H. Kim, D.-W. Kim, K. S. Hong, and J.-H. Kim, "Dielectric properties of Ln(Mg1/2Ti1/2)O3 as substrates for high-T c superconductor thin films," Journal of Materials Research, vol. 14, pp. 2484-2487, 1999.
[18] C.-L. Huang and J.-Y. Chen, "Synthesis, Crystal Structure, and Microwave Dielectric Properties of (Mg1−xCox)Ta2O6 Solid Solutions," Journal of the American Ceramic Society, vol. 93, pp. 470-473, 2010.
[19] M. H. Weng, T. J. Liang, and C. L. Huang, "Lowering of sintering temperature and microwave dielectric properties of BaTi4O9 ceramics prepared by the polymeric precursor method," Journal of the European Ceramic Society, vol. 22, pp. 1693-1698, 2002.
[20] C.-L. Huang and J.-Y. Chen, "Phase Relation and Microwave Dielectric Properties of (Zn1−xCox)Ta2O6 System," Journal of the American Ceramic Society, vol. 93, pp. 1248-1251, 2010.
[21] S.-i. Hirano, T. Hayashi, and A. Hattori, "Chemical Processing and Microwave Characteristics of (Zr,Sn)TiO4 Microwave Dielectrics," Journal of the American Ceramic Society, vol. 74, pp. 1320-1324, 1991.
[22] P. V. Bijumon and M. T. Sebastian, "Influence of glass additives on the microwave dielectric properties of Ca5Nb2TiO12 ceramics," Materials Science and Engineering: B, vol. 123, pp. 31-40, 2005.
[23] L. Fang, H. Zhang, T. H. Huang, R. Z. Yuan, and R. Dronskowski, "Preparation, structure and dielectric properties of Ba4LaMNb3O15 (M=Ti, Sn ) ceramics," Materials Research Bulletin, vol. 39, pp. 1649-1654, 2004.
[24] H. Zhang, L. Fang, R. Dronskowski, P. Müller, and R. Z. Yuan, "Some A6B5O18 cation-deficient perovskites in the BaO–La2O3–TiO2–Nb2O5 system," Journal of Solid State Chemistry, vol. 177, pp. 4007-4012, 2004.
[25] N. Santha and M. T. Sebastian, "Low temperature sintering and microwave dielectric properties of Ba4Sm9.33Ti18O54 ceramics," Materials Research Bulletin, vol. 43, pp. 2278-2284, 2008.
[26] K. Wakino, K. Minai, and H. Tamura, "Microwave Characteristics of (Zr, Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 Dielectric Resonators," Journal of the American Ceramic Society, vol. 67, pp. 278-281, 1984.
[27] K. Ezaki, Y. Baba, H. Takahashi, K. Shibata, and S. Nakano, "Microwave Dielectric Properties of CaO-Li2O-Ln2O3-TiO2 Ceramics," Japanese Journal of Applied Physics, vol. 32, p. 4319, 1993.
[28] Y.-j. Gu, J.-l. Huang, Q. Li, D.-m. Sun, and H. Xu, "Low-temperature firing and microwave dielectric properties of 16CaO–9Li2O–12Sm2O3–63TiO2 ceramics with V2O5 addition," Journal of the European Ceramic Society, vol. 28, pp. 3149-3153, 2008.
[29] C.-L. Huang, J.-Y. Chen, and Y.-W. Tseng, "High-dielectric-constant and low-loss microwave dielectric in the Ca(Mg1/3Ta2/3)O3–(Ca0.8Sr0.2)TiO3 solid solution system," Materials Science and Engineering: B, vol. 167, pp. 142-146, 2010.
[30] W. W. Cho, K.-i. Kakimoto, and H. Ohsato, "High-Q Microwave Dielectric SrTiO3 -Doped MgTiO3 Materials with Near-Zero Temperature Coefficient of Resonant Frequency," Japanese Journal of Applied Physics, vol. 43, p. 6221, 2004.
[31] J.-J. Wang, "Study of (1−x)(Mg0.6Zn0.4)0.95Co0.05TiO3–xCa0.61Nd0.26TiO3 microwave dielectrics," Journal of Alloys and Compounds, vol. 486, pp. 423-426, 2009.
[32] W. Lei, W.-Z. Lu, J.-H. Zhu, and X.-H. Wang, "Microwave dielectric properties of ZnAl2O4–TiO2 spinel-based composites," Materials Letters, vol. 61, pp. 4066-4069, 2007.
[33] C.-L. Huang, Kuo-Hau Chiang, and Chi-Yuen Huang. , "Microwave dielectric properties and microstructures of MgTa2O6 ceramics with CuO addition.," Materials chemistry and physics vol. 90.2-3 pp. 373-377., 2005.
[34] 刘卓承., "械球磨制备Mg70Ni30基复合材料在TiF3/TiO2催化机理下的电化学性能.."
[35] S. Jeong-Ho, I. Yoshiyuki, Y. Sang-Ok, I. Mitsuru, N. Tetsuro, Y. Seok-Jin, and K. Hyun-Jai, "Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High Q Values," Japanese Journal of Applied Physics, vol. 33, p. 5466, 1994.
[36] L. Li, X. Ding, and Q. Liao, "Reaction-sintering method for ultra-low loss (Mg0.95Co0.05)TiO3 ceramics," Journal of Alloys and Compounds, vol. 509, pp. 7271-7276, 2011/06/30/ 2011.
[37] A. Belous, O. Ovchar, D. Durylin, M. Valant, M. Macek-Krzmanc, and D. Suvorov, "Microwave composite dielectrics based on magnesium titanates," Journal of the European Ceramic Society, vol. 27, pp. 2963-2966, 2007.
[38] H. Ogawa, H. Taketani, A. Kan, A. Fujita, and G. Zouganelis, "Evaluation of electronic state of Mg4(Nb2−xSbx)O9 microwave dielectric ceramics by first principle calculation method," Journal of the European Ceramic Society, vol. 25, pp. 2859-2863, 2005.
[39] A. Kan and H. Ogawa, "Influence of sintering temperature on microwave dielectric property and crystal structure of corundum-structured Mg4NbSbO9 ceramic," Journal of Alloys and Compounds, vol. 468, pp. 338-342, 2009.
[40] C.-L. Huang, Y.-B. Chen, and C.-F. Tasi, "Influence of B2O3 additions to 0.8(Mg0.95Zn0.05)TiO3-0.2Ca0.61Nd0.26TiO3 ceramics on sintering behavior and microwave dielectric properties," Journal of Alloys and Compounds, vol. 460, pp. 675-679, 2008.
[41] C.-L. Huang, Y.-B. Chen, and C.-F. Tasi, "Influence of V2O5 additions to 0.8(Mg0.95Zn0.05)TiO3–0.2Ca0.61Nd0.26TiO3 ceramics on sintering behavior and microwave dielectric properties," Journal of Alloys and Compounds, vol. 454, pp. 454-459, 2008.
[42] C.-L. Huang, C.-F. Tasi, Y.-B. Chen, and Y.-C. Cheng, "New dielectric material system of (Mg0.95Zn0.05)TiO3–Ca0.61Nd0.26TiO3 at microwave frequency," Journal of Alloys and Compounds, vol. 453, pp. 337-340, 4/3/ 2008.
[43] X. Huang, Y. Song, and F. Wang, "Microwave dielectric properties of BaTi4O9–BaSm2Ti4O12 composite ceramics," Journal of the Ceramic Society of Japan, vol. 121, pp. 880-883, 2013 2013.
[44] W. S. Kim, K. H. Yoon, and E. S. Kim, "Microwave Dielectric Properties and Far-Infrared Reflectivity Characteristics of the CaTiO3–Li(1/2)−3xSm(1/2)+xTiO3Ceramics," Journal of the American Ceramic Society, vol. 83, pp. 2327-2329, 2000.
[45] E. S. Kim, S. J. Kim, and H. G. Lee, "Dielectric properties of MgB2O6 (B5+=Nb, Ta, Sb) at microwave frequencies," Journal of the Ceramic Society of Japan, vol. 116, pp. 545-549, 2008.
[46] M. Avdeev, M. P. Seabra, and V. M. Ferreira, "Structure evolution in La(Mg0.5Ti0.5)O3–SrTiO3 system," Materials Research Bulletin, vol. 37, pp. 1459-1468, 2002.
[47] L. Abdul Khalam, S. Thomas, and M. T. Sebastian, "Tailoring the Microwave Dielectric Properties of MgNb2O6 and Mg4Nb2O9 Ceramics," International Journal of Applied Ceramic Technology, vol. 4, pp. 359-366, 2007.
[48] Y.-B. Chen, "Dielectric properties and crystal structure of Mg2TiO4 ceramics substituting Mg2+ with Zn2+ and Co2+," Journal of Alloys and Compounds, vol. 513, pp. 481-486, 2012.
[49] C.-L. Huang, S.-H. Lin, S.-S. Liu, Y.-B. Chen, and S.-Y. Wang, "Microwave dielectric properties of x(Mg0.7Zn0.3)0.95Co0.05TiO3–(1−x)Ca0.8Sr0.2TiO3 ceramics with a zero temperature coefficient of resonant frequency," Journal of Alloys and Compounds, vol. 503, pp. 392-396, 2010.
[50] Y.-B. Chen, "Microwave dielectric properties of x(Mg0.7Zn0.3)0.95Co0.05TiO3–(1−x)Ca0.8Sm0.4/3TiO3 ceramics with a zero temperature coefficient of resonant frequency," Journal of Alloys and Compounds, vol. 507, pp. 286-289, 2010.
[51] C.-L. Huang, S.-H. Lin, S.-S. Liu, and Y.-B. Chen, "x(Mg0.7Zn0.3)0.95Co0.05TiO3-(1−x)(La0.5Na0.5)TiO3 ceramic at microwave frequency with a near zero temperature coefficient of resonant frequency," Journal of Alloys and Compounds, vol. 489, pp. 541-544, 1/21/ 2010.
[52] A. Kan, H. Ogawa, A. Yokoi, and H. Ohsato, "Low-Temperature Sintering and Microstructure of Mg4(Nb2-xVx)O9 Microwave Dielectric Ceramic by V Substitution for Nb," Japanese Journal of Applied Physics, vol. 42, p. 6154, 2003.
[53] K. Wakino, "Recent Development of Dielectric Resonator Materials and Filters in Japan," Ferroelectrics, vol. 91, pp. 69–86, 1989.
[54] C.-L. Huang and M.-H. Weng, "Improved high q value of MgTiO3-CaTiO3 microwave dielectric ceramics at low sintering temperature," Materials Research Bulletin, vol. 36, pp. 2741-2750, 12 2001.
[55] C.-L. Huang and S.-S. Liu, "Low-Loss Microwave Dielectrics in the (Mg1−xZnx)2TiO4 Ceramics," Journal of the American Ceramic Society, vol. 91, pp. 3428-3430, 2008.
[56] C.-L. Huang and J.-Y. Chen, "High-Q Microwave Dielectrics in the (Mg1−xCox)2TiO4 Ceramics," Journal of the American Ceramic Society, vol. 92, pp. 379-383, 2009.
[57] C.-L. Huang and C.-E. Ho, "Microwave Dielectric Properties of (Mg1−xNix)2TiO4 (x=0.02–0.1) Ceramics," International Journal of Applied Ceramic Technology, vol. 7, pp. E163-E169, 2010.
[58] C.-L. Huang and J.-Y. Chen, "Low-Loss Microwave Dielectric Ceramics Using (Mg1−xMnx)2TiO4 (x=0.02–0.1) Solid Solution," Journal of the American Ceramic Society, vol. 92, pp. 675-678, 2009.
[59] S. J. Penn, N. M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, "Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina," Journal of the American Ceramic Society, vol. 80, pp. 1885-1888, 1997.
[60] N. Ichinose and H. Yamamoto, "Effect of additives on microwave dielectric properties in low-temperature firing (Mg,Ca)TiO3 based ceramics," Ferroelectrics, vol. 201, pp. 255-262, 1997/09/01 1997.
[61] H. Cheng-Liang and P. Chung-Long, "Low-Temperature Sintering and Microwave Dielectric Properties of (1-x)MgTiO3 –xCaTiO3 Ceramics Using Bismuth Addition," Japanese Journal of Applied Physics, vol. 41, p. 707, 2002.
[62] C.-L. Huang, C.-L. Pan, C.-C. Yu, and J.-S. Shen, "Low firable 0.95MgTiO3-0.05CaTiO3 microwave dielectrics," Journal of Materials Science Letters, vol. 21, pp. 149-151, 2002/01/01 2002.
[63] T. S. K. R. K. Bhuyan, D. Pamu , J. M. Renehan, and M. V. Jacob,, "Low temperature and broadband dielectricproperties of V2O5 doped Mg2TiO4ceramics," 2014.
[64] C.-L. Huang, J.-Y. Chen, and C.-Y. Jiang, "Dielectric characteristics and sintering behavior of Mg2TiO4–(Ca0.8Sr0.2)TiO3 ceramic system at microwave frequency," Journal of Alloys and Compounds, vol. 487, pp. 420-424, 11/13/ 2009.
[65] J.-Y. Chen and C.-L. Huang, "A new low-loss microwave dielectric using (Ca0.8Sr0.2)TiO3-doped MgTiO3 ceramics," Materials Letters, vol. 64, pp. 2585-2588, 2010.
[66] Y. Baskin and D. C. Schell, "Phase Studies in the Binary System MgO–Ta2O5," Journal of the American Ceramic Society, vol. 46, pp. 174-177, 1963.
[67] E. F. Bertaut, L. Corliss, F. Forrat, R. Aleonard, and R. Pauthenet, "Etude de niobates et tantalates de metaux de transition bivalents," Journal of Physics and Chemistry of Solids, vol. 21, pp. 234-251, 1961/12/01 1961.
[68] N. Kumada, K. Taki, and N. Kinomura, "Single crystal structure refinement of a magnesium niobium oxide: Mg4Nb2O9," Materials Research Bulletin, vol. 35, pp. 1017-1021, 2000.
[69] A. Kan, H. Ogawa, A. Yokoi, and Y. Nakamura, "Crystal structural refinement of corundum-structured A4M2O9(A=Co and Mg, M=Nb and Ta) microwave dielectric ceramics by high-temperature X-ray powder diffraction," Journal of the European Ceramic Society, vol. 27, pp. 2977-2981, 2007.
[70] C.-L. Huang and J.-Y. Chen, "The effect of RF power and deposition temperature on the structure and electrical properties of Mg4Ta2O9 thin films prepared by RF magnetron sputtering," Journal of Crystal Growth, vol. 311, pp. 627-633, 1/15/ 2009.
[71] M. Thirumal, I. N. Jawahar, K. P. Surendiran, P. Mohanan, and A. K. Ganguli, "Synthesis and microwave dielectric properties of Sr3Zn1−xMgxNb2O9 phases," Materials Research Bulletin, vol. 37, pp. 185-191, 1// 2002.
[72] H. T. Kim, S. Nahm, J. D. Byun, and Y. Kim, "Low-Fired (Zn,Mg)TiO3 Microwave Dielectrics," Journal of the American Ceramic Society, vol. 82, pp. 3476-3480, 1999.
[73] G.-g. Yao and P. Liu, "Low-temperature sintering and microwave dielectric properties of (1−x)Mg4Nb2O9−xCaTiO3 ceramics," Physica B: Condensed Matter, vol. 405, pp. 547-551, 2010.
[74] L. Li, M. Zhang, Q. Liao, W. Xia, and X. Ding, "Composite dielectrics (1−y)(Mg1−xZnx)1.8Ti1.1O4–yCaTiO3 suitable for microwave applications," Journal of Alloys and Compounds, vol. 531, pp. 18-22, 2012.
[75] L. Wang, Q. Sun, W. Ma, and Z. Huan, "Microwave dielectric characteristics of Li2(Mg0.94M0.06)Ti3O8 (M=Zn, Co, and Mn) ceramics," Ceramics International, vol. 39, pp. 5185-5190, 2013.
[76] Z. Huan, Q. Sun, W. Ma, L. Wang, F. Xiao, and T. Chen, "Crystal structure and microwave dielectric properties of (Zn1−xCox)TiNb2O8 ceramics," Journal of Alloys and Compounds, vol. 551, pp. 630-635, 2013.
[77] Y. Zhang, J. Wang, Z. Yue, Z. Gui, and L. Li, "Effects of Mg2+ substitution on microstructure and microwave dielectric properties of (Zn1−xMgx)Nb2O6 ceramics," Ceramics International, vol. 30, pp. 87-91, 2004.
[78] C.-L. Huang, Y.-W. Tseng, J.-Y. Chen, and Y.-C. Kuo, "Dielectric properties of high-Q (Mg1–xZnx)1.8Ti1.1O4 ceramics at microwave frequency," Journal of the European Ceramic Society, vol. 32, pp. 2365-2371, 2012.
[79] A. Yoshida, H. Ogawa, A. Kan, S. Ishihara, and Y. Higashida, "Influence of Zn and Ni substitutions for Mg on dielectric properties of (Mg4-xMx)4(Nb2−ySby)2O9 (M=Zn and Ni) solid solutions," Journal of the European Ceramic Society, vol. 24, pp. 1765-1768, // 2004.
[80] A. Kan, H. Ogawa, and A. Yokoi, "Sintering temperature dependence of microwave dielectric properties in Mg4(TaNb1−xVx)O9 compounds," Materials Research Bulletin, vol. 41, pp. 1178-1184, 6/15/ 2006.
[81] W.-R. Yang, C.-C. Pan, and C.-L. Huang, "Influence of Mg substitutions for Zn on the phase relation and microwave dielectric properties of (Zn1−xMgx)3Nb2O8 (x=0.02–1.0) system," Journal of Alloys and Compounds, vol. 581, pp. 257-262, 12/25/ 2013.
[82] R. D. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides," Acta Crystallographica Section A, vol. A32, pp. 751-767, 1976.
[83] C.-L. Huang, Y.-W. Tseng, and Y.-C. Kuo, "Low-Loss Microwave Dielectrics in the (Mg1−xCox)1.8Ti1.1O4 (x=0.03–1.00) Solid Solutions," Journal of the American Ceramic Society, vol. 94, pp. 2963-2967, 2011.
[84] A. Yokoi, H. Ogawa, A. Kan, H. Ohsato, and Y. Higashida, "Microwave dielectric properties of Mg4Nb2O9–3.0wt.% LiF ceramics prepared with CaTiO3 additions," Journal of the European Ceramic Society, vol. 25, pp. 2871-2875, 2005.
[85] D. Sun, S. Senz, and D. Hesse, "Topotaxial Formation of Mg4Nb2O9 and MgNb2O6 Thin Films on MgO (001) Single Crystals by Vapor–Solid Reaction," Journal of the American Ceramic Society, vol. 86, pp. 1049-1051, 2003.
[86] C.-L. Huang, J.-Y. Chen, and C.-C. Liang, "Dielectric properties of a new ceramic system (1−x)Mg4Nb2O9–xCaTiO3 at microwave frequency," Materials Research Bulletin, vol. 44, pp. 1111-1115, 5/6/ 2009.
[87] C.-L. Huang, J.-Y. Chen, and C.-C. Liang, "Dielectric properties and mixture behavior of Mg4Nb2O9–SrTiO3 ceramic system at microwave frequency," Journal of Alloys and Compounds, vol. 478, pp. 554-558, 6/10/ 2009.
[88] N. Santha, I. N. Jawahar, P. Mohanan, and M. T. Sebastian, "Microwave dielectric properties of (1−x)CaTiO3–xSm(Mg1/2Ti1/2)O3 [0.1≤x≤1]ceramics," Materials Letters, vol. 54, pp. 318-322, 6// 2002.
[89] V. M. Ferreira, F. Azough, R. Freer, and J. L. Baptista, "The effect of Cr and La on MgTiO3 and MgTiO3–CaTiO3 microwave dielectric ceramics," Journal of Materials Research, vol. 12, pp. 3293-3299, 1997.
[90] P. L. Wise, I. M. Reaney, W. E. Lee, T. J. Price, D. M. Iddles, and D. S. Cannell, "Structure–microwave property relations in (SrxCa(1-x))n+1TinO3n+1," Journal of the European Ceramic Society, vol. 21, pp. 1723-1726, 2001.
[91] H. Jia-Sheng and M. J. Lancaster, "Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters," Microwave Theory and Techniques, IEEE Transactions on, vol. 44, pp. 2099-2109, 1996.
[92] B. I. B. a. B. Bleaney, "Electriciw and Magnetism, 3rd ed.Oxford: Oxford Univ. Press,," vol. vol. 1, ch. 7, 1976.
[93] H. Jia-Sheng and M. J. Lancaster, "Cross-coupled microstrip hairpin-resonator filters," Microwave Theory and Techniques, IEEE Transactions on, vol. 46, pp. 118-122, 1998.
[94] L. Sheng-Yuan and T. Chih-Ming, "New cross-coupled filter design using improved hairpin resonators," Microwave Theory and Techniques, IEEE Transactions on, vol. 48, pp. 2482-2490, 2000.
[95] C. Shuh-Han, "Measurements of Microwave Conductivity and Dielectric Constant by the Cavity Perturbation Method and Their Errors," IEEE Transactions on Microwave Theory and Techniques, vol. 33, pp. 519-526, 1985.
[96] S.-C. Chang, "Analysis and Design of Multilayer Dual-Band Bandpass Filter," 2003.
[97] W. E. Courtney, "Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability Microwave Insulators," Microwave Theory and Techniques, IEEE Transactions on, vol. 18, pp. 476-485, 1970.
[98] B. W. Hakki and P. D. Coleman, "A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range," Microwave Theory and Techniques, IRE Transactions on, vol. 8, pp. 402-410, 1960.
[99] Y. Kobayashi and M. Katoh, "Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method," Microwave Theory and Techniques, IEEE Transactions on, vol. 33, pp. 586-592, 1985.
[100] Y.-B. Chen, "Microwave dielectric properties of [(Mg0.5Zn0.5)0.95Co0.05]2TiO4 ceramics with BaCu(B2O5) sintered at low temperatures," Journal of Alloys and Compounds, vol. 543, pp. 125-128, 2012.
[101] C.-F. Shih, W.-M. Li, M.-M. Lin, C.-Y. Hsiao, and K.-T. Hung, "Low-temperature sintered Zn2TiO4:TiO2 with near-zero temperature coefficient of resonant frequency at microwave frequency," Journal of Alloys and Compounds, vol. 485, pp. 408-412, 10/19/ 2009.
[102] H. Shin, H.-K. Shin, H. S. Jung, S.-Y. Cho, and K. S. Hong, "Phase evolution and dielectric properties of MgTi2O5 ceramic sintered with lithium borosilicate glass," Materials Research Bulletin, vol. 40, pp. 2021-2028, 2005.
[103] C.-L. Huang and C.-H. Shen, "Phase Evolution and Dielectric Properties of (Mg0.95M0.052+)Ti2O5 (M2+=Co, Ni, and Zn) Ceramics at Microwave Frequencies," Journal of the American Ceramic Society, vol. 92, pp. 384-388, 2009.
[104] M. A. Petrova, G. A. Mikirticheva, A. S. Novikova, and V. F. Popova, "Spinel solid solutions in the systems MgAl2O4–ZnAl2O4 and MgAl2O4–Mg2TiO4," Journal of Materials Research, vol. 12, pp. 2584-2588, 1997.
[105] H. Tamura, "Microwave dielectric losses caused by lattice defects," Journal of the European Ceramic Society, vol. 26, pp. 1775-1780, // 2006.
[106] J. D. Breeze, J. M. Perkins, D. W. McComb, and N. M. Alford, "Do Grain Boundaries Affect Microwave Dielectric Loss in Oxides?," Journal of the American Ceramic Society, vol. 92, pp. 671-674, 2009.
[107] V. L. Gurevich and A. K. Tagantsev, "Intrinsic dielectric loss in crystals," Advances in Physics, vol. 40, pp. 719-767, 1991/12/01 1991.
[108] B.-J. Li, S.-Y. Wang, Y.-H. Liao, and Y.-B. Chen, "Dielectric properties and crystal structure of (Mg1−xCox)2(Ti0.95Sn0.05)O4 ceramics," Journal of the Ceramic Society of Japan, vol. 122, pp. 955-958, 2014 2014.
[109] B.-J. Li, S.-Y. Wang, Y.-h. Liao, S.-H. Lin, and Y.-B. Chen, "Low loss dielectric material system of (1-x)(Mg0.95Co0.05)2(Ti0.95Sn0.05)O4-x(Ca0.8Sm0.4/3)TiO3 at microwave frequency with a near-zero temperature coefficient of the resonant frequency," Journal of the Ceramic Society of Japan, vol. 124, pp. 208-212, 2016.
[110] B.-J. Li, S.-Y. Wang, Y.-h. Liao, S.-H. Lin, and Y.-B. Chen, "High dielectric constant and low loss microwave dielectric ceramics of (1-y)(Mg0.95Co0.05)2(Ti0.95Sn0.05)O4-y(Ca0.61Nd0.8/3)TiO3 for microwave applications," Journal of the Ceramic Society of Japan, vol. 124, pp. 460-463, 2016.
[111] C.-L. Huang and S.-S. Liu, "Dielectric characteristics of the (1−x)Mg2TiO4–xSrTiO3 ceramic system at microwave frequencies," Journal of Alloys and Compounds, vol. 471, pp. L9-L12, 2009.
[112] C.-L. Huang, J.-Y. Chen, and B.-J. Li, "Effect of CaTiO3 addition on microwave dielectric properties of Mg2(Ti0.95Sn0.05)O4 ceramics," Journal of Alloys and Compounds, vol. 509, pp. 4247-4251, 3/17/ 2011.
[113] L. Hyo-Jong, K. In-Tae, and H. Kug?Sun, "Dielectric Properties of A B 2 O 6 Compounds at Microwave Frequencies (A=Ca, Mg, Mn, Co, Ni, Zn, and B=Nb, Ta)," Japanese Journal of Applied Physics, vol. 36, p. L1318, 1997.
[114] C.-L. Huang, C.-H. Chu, F.-S. Liu, and P.-C. Yu, "High-Q microwave dielectrics in the (Mg1−xZnx)4Ta2O9 ceramics," Journal of Alloys and Compounds, vol. 590, pp. 494-499, 2014.
[115] C.-L. Huang, K.-H. Chiang, and C.-Y. Huang, "Microwave dielectric properties and microstructures of MgTa2O6 ceramics with CuO addition," Materials Chemistry and Physics, vol. 90, pp. 373-377, 2005.
[116] C.-L. Huang and Y.-W. Tseng, "Structure, Dielectric Properties, and Applications of CaTiO3-Modified Ca4MgNb2TiO12 Ceramics at Microwave Frequency," Journal of the American Ceramic Society, vol. 94, pp. 1824-1828, 2011.
[117] B.-J. Li, S.-Y. Wang, and Y.-B. Chen, "Microwave dielectric properties and microstructure of [(Mg1-xZnx)0.95Co0.05]1.02TiO3.02 ceramics," Journal of the Ceramic Society of Japan, vol. 122, pp. 708-713, 2014.